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ENHANCING PRE-SERVICE 
MATHEMATICS TEACHERS’ PROOF-
WRITING SKILLS: THE EFFECT OF 
A SOCIAL LEARNING ENVIRONMENT 
ENRICHED WITH DYNAMIC 
GEOMETRY SOFTWARE

ABSTRACT
Mathematical proof, often regarded as the heart of mathematics, is essential for interconnected 
mathematical knowledge. However, proof-writing skills do not develop inherently. Effective 
learning environments are vital for university students to enhance these skills. This study 
investigates the impact of the ISMAT model on pre-service teachers’ proof-writing skills. The model, 
based on quasi-experimental paradigms and arguments from Popper (1979) and Lakatos (1961, 
1976), utilizes dynamic geometry software to enhance the understanding of proof functions. 
It is hypothesized that a social learning environment, augmented by dynamic geometry, will 
yield observable effects. The research employed a quasi-experimental design with experimental 
and control groups of pre-service mathematics teachers. The experimental group received 14 
weeks of Euclidean geometry lessons using the ISMAT model, while the control group followed 
traditional methods. Data were collected through proof-writing tests administered pre- and post-
instruction. The evaluations were conducted using Senk’s (1983) framework for assessing proof-
writing skills. Results indicated that the ISMAT model significantly enhanced proof-writing skills 
compared to traditional teaching methods. Such approaches are recommended to foster active 
student engagement in the proving process.
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Highlights

•	 The ISMAT Model underpins the design of proof-writing teaching environments. 
•	 The model integrates social dimensions, proof functions, and reasoning types. 
•	 The model is adaptable to various educational levels for proof-writing teaching.
•	 A social learning environment enhanced with dynamic geometry software effectively enhances proof-writing skills.

INTRODUCTION
The advancement of mathematical knowledge requires 
geometry to improve deductive reasoning (González & Herbst, 
2006). Proofs are crucial for conveying essential mathematical 
concepts (Hanna & Barbeau, 2010). Therefore, proofs are 
fundamental to the essence of mathematics (Ross, 1998), and 
the  discipline is fundamentally about proof-writing (Heintz, 
2000). As a  result, the development of proof skills is crucial 
in Turkey’s mathematics and geometry education, alongside 
skills such as data reasoning and problem-solving (MEB, 2013; 

Nasibov & Kaçar, 2005; Toluk, 2003). In school mathematics, 
the main goals of proof include fostering explanation, insight, 
and deep understanding (e.g., Dickerson & Doerr, 2014; 
Hanna, 2000; Stylianides, 2009; Yackel & Hanna, 2003). Thus, 
proof-writing is a fundamental aspect of mathematics teaching.
Proof is essential in mathematics for disseminating and 
comprehending knowledge (Dolev & Elen, 2013; Ozturk, 
2016; Mariotti, 2006). It serves to validate statements and 
reveal fundamental truths (Stylianou, Blanton & Knuth, 
2009; Hanna, 2000). Additionally, proof incorporates a social 
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aspect, involving mental activities like conjecturing and 
logical deduction (Hanna, 1991; Greenberg, 1993). Despite its 
significance in education, research shows students encounter 
notable challenges with mathematical proof at various 
educational levels (Heinze et al., 2008; Hoyles & Küchemann, 
2002; Knuth, Choppin & Bieda, 2009; Stylianides & Stylianides, 
2017). These challenges encompass a  lack of initiation 
knowledge, misinterpretation of the  necessity of techniques, 
and the  perception of proofs as superfluous (Weber, 2001; 
Burgett, 2018; Buchbinder & McCrone, 2020). Furthermore, 
the  perceived simplicity of proofs is exacerbated by non-
collaborative activities, which are vital for the proving process 
(Cilli-Turner, 2017; Grundmeier et al., 2022; Melhuish et al., 
2022; Yoo & Smith, 2007). Students’ engagement with proof 
frequently remains static despite the implementation of diverse 
pedagogical approaches aimed at mitigating these challenges 
(Bermudez & Graysay, 2025; Ndemo, Mtetwa & Zindi, 2019).
This research focuses on the  social dimensions inherent in 
the  construction of mathematical knowledge, the  functions 
of proof, and how a  pedagogical approach involving 
the integration of dynamic geometry software into the learning 
environment affects pre-service teachers’ skills in writing 
mathematical proofs.

Theoretical Background
Proof enhances mathematical knowledge and understanding 
(Hanna & Barbeau, 2010). Recognizing connections and 
comprehending mathematical thought are essential for proof 
(Flores, 2002). Forman et al. (1998) emphasize the importance 
of proof-writing in developing mathematical language. 
Proof distinguishes mathematical statements from other 
ideas, conferring significance (Hersh, 2009). However, proof 
involves exploration, conjecturing, reasoning, and argument 
formulation (Hanna et al., 2004; Pedemonte & Reid, 2011; 
Remillard, 2009; Stylianides & Ball, 2008). Researchers 
contend that proof fulfills various functions beyond verification 
in mathematics education (Almeida, 2003; Bell, 1976; De 
Villiers, 1990; Hanna & Jahnke, 1996; Hanna, Jahnke & Pulte, 
2010). De Villiers (1990) builds on Bell’s (1976) functions of 
proof, adding discovery and communication. The functions of 
proof encompass verification, explanation, systematization, 
discovery, and communication. De Villiers (1999) argues 
that proof presents an  intellectual challenge, thus adding 
this function. Consequently, proof involves investigating 
mathematical phenomena through pattern recognition, 
conjecturing, and argumentation (Stylianides, 2008). In 
mathematics education, proof significantly contributes to 
the  augmentation of mathematical proficiency and logical 
reasoning (Hanna, 2000).

Challenges in the Proving Process
Proof is fundamental for mathematical comprehension and 
communication (e.g., Ball & Bass, 2003; Hanna Larvor & Yan, 
2023; Herbst & Brach, 2006). However, the  significance of 
proof in fostering mathematical thought is often underestimated. 
Consequently, proof-writing presents challenges for students at 
all academic levels (e.g., Jones & Herbst, 2012; Stylianides 
& Stylianides, 2017; Stylianou, Blanton & Knuth, 2009). 

Numerous studies identify various factors contributing to 
difficulties in proof-writing (e.g., Chazan, 1993; Harel & Fuller, 
2009; Harel & Sowder, 2007; Moore, 1994; Selden & Selden, 
2007; Weber, 2006). Moore (1994) delineates key sources of 
students’ challenges in proof-writing, including perceptions 
of mathematics and proof, conceptual understanding, 
mathematical language, and initiation of proof. Harel and 
Sowder (2007) emphasize the  role of cognitive factors in 
shaping students’ engagement with proof. They assert that 
multiple influences, such as students’ or teachers’ attitudes 
towards proof and the  design of the  learning environment, 
affect students’ proof-related behaviors, necessitating 
a  multifaceted approach to understanding their difficulties. 
This indicates that an  array of factors impacts the  proving 
process. Therefore, a thorough understanding of the obstacles 
in proof-writing is imperative. Moreover, it is crucial to create 
educational settings that facilitate proof-writing and to employ 
pedagogical strategies that reflect the intrinsic nature of proof 
and encourage student involvement in proof activities.

Proof-Writing Skill
Proof is a  comprehensive process reliant on visual or 
experimental evidence, logical reasoning, and personal 
convictions (Hoyles & Healy, 2007). Proof-writing is not 
merely about demonstrating mathematical truth; it embodies 
a cognitive framework. This is supported by Ball et al. (2002), 
who argue that it involves cognitive habits like identifying 
constructs, exploring, formulating assumptions, and 
organizing reasoning. Greenberg (1993) further substantiates 
this by noting that writing proofs includes various cognitive 
activities such as generating assumptions and deriving 
logical conclusions. Thus, proof-writing is a significant task 
that requires a wide range of skills, including reasoning and 
problem-solving, which enhance mathematical cognition. 
Therefore, instructional methods that encompass diverse 
skills and recognize the  essence of proof are linked to 
improved proof-writing skills among students. This is echoed 
by Senk (1983), who attributed proof-writing difficulties to 
the  characteristics of the  mathematical system, cognitive 
development stages, and the  pedagogical approaches 
employed. Furthermore, Senk’s consideration of reasoning, 
justification, and mathematical language in her research 
on proof-writing and geometry comprehension highlights 
the  complexity inherent in the  proving process. As such, 
the  critical actions in writing proofs and the  identification 
of instructional methods as factors in these challenges 
emphasize the necessity for learning environments that align 
with the intrinsic nature of the proving process.
In academic research examining proof-writing (e.g., Ko 
& Knuth, 2009; Moore, 2016; Senk, 1983; Stylianides & 
Stylianides, 2009; Winer & Battista, 2022), qualitative analyses 
focus on essential criteria for validating an  argument as 
a legitimate proof. Notably, reasoning, mathematical language, 
and justification are critical factors in evaluating proofs in 
these investigations. The  five-level scoring scale created 
by Senk (1983) systematically assesses proofs, covering 
these dimensions and providing scores for each criterion, 
thereby enhancing its value as an evaluative instrument. This 
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framework increases its efficacy by promoting thorough and 
explicit evaluations of proofs. The scoring scale proposed by 
Senk (1983) is outlined below.

•	 0 – Student writes nothing, writes only the  given, or 
writes invalid or useless deductions;

•	 1 – Student writes at least one valid deduction and gives 
a reason;

•	 2 – Student shows evidence of using a chain of reasoning, 
either by deducing about half the proof and stopping, or 
by writing a “proof” that is invalid because it is based on 
faulty reasoning early in the steps;

•	 3 – Student writes a  proof in which all steps follow 
logically, but in which there are errors in notation, 
vocabulary, or names of theorems;

•	 4 – Student writes a valid proof with at most one error 
in notation.

Instructional Approaches for Teaching Proof 
and Proposed Model
The primary benefit of proof in mathematics education is 
enhancing mathematical comprehension (Hanna & Jahnke, 
1996; Hersh, 1997). Traditionally, proof serves to confirm 
the  accuracy of mathematical statements (Avigad, 2005; 
De Villiers, 1990). Nevertheless, numerous researchers 
emphasize that proof encompasses various functions beyond 
mere validation in pedagogical contexts (e.g., Almeida, 2003; 
Bell, 1976; De Villiers, 1990; Hanna & Jahnke, 1996; Hanna, 
Jahnke & Pulte, 2010). These researchers identify analogous 
functions associated with the  mathematical significance 
of proof. De Villiers (1999) elaborates on Bell’s (1976) 
framework by incorporating discovery, communication, 
and intellectual challenge as additional dimensions of proof. 
Stylianides (2009) corroborates this diversity of functions, 
indicating that mathematical proof involves actions such as 
generalizing patterns, formulating conjectures, constructing 
arguments, assessing others’ conjectures or arguments, and 
disseminating mathematical knowledge. Therefore, it is crucial 
to adopt proof teaching methods that align with the nature of 
proof and encourage student engagement in proof activities. 
Furthermore, it is imperative to foster learning environments 
conducive to proof teaching that enable students to engage 
with the  procedural steps similar to those undertaken by 
mathematicians during the proving process.
In undergraduate mathematics, proof teaching follows 
a  standard deductive sequence of definition, theorem, and 
proof (Almeida, 2000). Moreover, proofs are presented 
solely as final products, depriving students of practical 
proof experiences (Alibert & Thomas, 1991; Ferrari, 2004). 
Consequently, this methodology results in a  deficient 
comprehension of mathematical proof among students (Knuth 
& Elliot, 1997). Therefore, pre-service mathematics teachers 
should be immersed in environments where the  concept of 
proof is emphasized, enabling them to engage in the process of 
proving. Enhancing their skill in this area will empower them to 
mentor students based on personal experiences. Consequently, 
acknowledging the  increasing importance of proof within 
the  realm of mathematics and its educational practices, 
reformulating instructional methodologies is essential.

In the  domain of proof teaching literature, numerous studies 
focus on the  enhancement of proof-writing skills (Bobango, 
1987; Cook-Box, 1996; Generazzo, 2011; Hart, 1986; Hsu, 
2010; Lee, 1999; Lee, 2011; Matsuda, 2004; Pulley, 2010; Senk, 
1983; Sommerhoff, Kollar & Ufer, 2021; Subramanian, 1991; 
Tubridy, 1992). Pulley (2010) specifically investigated how non-
traditional instructional activities impact students’ mathematical 
understanding, beliefs about proof, and reasoning. The  study 
involved students in activities that required them to create, justify, 
and validate proofs, resulting in advancements in geometric 
knowledge and reasoning. In contrast, Generazzo (2011) 
assessed the  effects of an  inquiry-based learning environment 
on students’ skills in conjecturing, reasoning, and proof-writing 
through collaborative group work and discussions. Sommerhoff, 
Kollar, and Ufer (2021) explored the effectiveness of sequential 
versus concurrent instructional methods on developing 
mathematical argumentation and proof skills, revealing that both 
strategies significantly enhance foundational resources for these 
skills, especially for lower-performing students. The  findings 
emphasized that interactive student activities substantially 
improve proof-writing and reasoning skills. Additionally, it 
was observed that studies assessing the effectiveness of proof 
teaching practices are less prevalent compared to descriptive 
studies on proof. Furthermore, these studies (e.g., Marrades 
& Gutiérrez, 2000; Selden, Selden & McKee, 2008; Smith, 
2006) aim to evaluate the impact of specific teaching methods 
or technologies on proof-writing. In studies that define multiple 
steps for proof-writing, these steps are employed to facilitate 
various activities; however, they lack the comprehensiveness of 
the instructional models utilized in proof teaching. This research 
holds significance for three primary reasons: it offers insights 
for developing teaching interventions to enhance students’ 
proof-writing skills and address cognitive challenges, it serves 
as a  foundation for reforming proof teaching practices, and it 
aids in recognizing the diverse functions of proof and reshaping 
perceptions thereof.
Overall, the  findings from these investigations suggest that 
alternative pedagogical approaches yield advantageous outcomes 
for students in the domain of proof-writing. Furthermore, they 
emphasize the critical role of delineating instructional models 
that enable learners to engage actively in the proving process. 
In response to the stated imperative, this study aims to propose 
a conceptual model that aspires to demonstrate that the proving 
process extends beyond the  mere validation of a  particular 
theorem; it also functions to elevate this endeavor as a substantial 
intellectual pursuit from the learners’ perspective by promoting 
their involvement with the essential activities that are foundational 
to the nature of proof. The instructional model aims to reveal that 
proof-writing is not just an action to demonstrate the accuracy 
of a given theorem, but also to make it a meaningful process 
for the  students by allowing them to experience the  inherent 
stages of proof-writing. The  Model includes seven stages: 
understanding the problem, constructing a structure, working on 
the structure and conjecturing, postulation of the relationship, 
proving, investigating the coherence of the proof, and formalizing 
the  proof. The  realization of each of the  reasoning types 
(deduction, induction, abduction), the reflection of the functions 
of proof (discovery, verification, explanation, systematization, 
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communication, mental challenge), the  inclusion of the views 
of Popper (1979) and Lakatos (1961, 1976) on the knowledge 
formation process, and the importance of the social dimension 
in this process were all considered when developing the ISMAT 
Model stages. Popper stated that science operates in four steps: 
formulating a  hypothesis, deducing observable and testable 
conclusions, testing those conclusions, and determining whether 
to accept or reject the  proposition (Hodson, 2008). Lakatos 
characterised a  scientific research programme as progressive 
and asserted that successive steps involve making testable 
predictions and confirming them (Worrall, 2003). This research 
program, especially in the  context of Lakatos, was developed 
as a synthesis of Kuhn’s and Popper’s opposing views. In his 
book the Structure of Scientific Revolutions, Thomas Kuhn—
the most significant historian and philosopher of science—
presented a radically different view of science. With his book, he 
attempted to make sense of the assertion that scientists working 
under conflicting paradigms “live in different worlds.”
Additionally, Popper (1979) emphasizes that individuals live in 
a mathematical world and asserts the existence of three different 
worlds. These three worlds are the physical, mental, and social 
worlds in that order. In the mental world, knowledge is derived 
from the individual’s experiences and beliefs. It is determined 
in the  physical world whether the  subjective knowledge is 
applicable and if it validates individuals’ experiences. In 
the mathematical world, individuals share their knowledge, and 
once that knowledge is confirmed, it becomes objective and 
universally accepted. Therefore, Popper and Kuhn advocate 

the presence of different worlds. According to Lakatos, Popper’s 
third realm is where knowledge grows and is restructured, which 
highlights the  same argument (Ozturk, 2016). The  actions in 
the  three worlds are compatible with the  steps of the proving 
process. Scientists also begin their endeavours by thinking, 
speculating, and generating a new claim. After that, they support 
their arguments and produce new knowledge. Proof-writing 
is, obviously, a  process of forming knowledge. As a  result, 
the ISMAT Model combines the ideas of Lakatos, Popper, and 
Kuhn. Each of these researchers made a substantial contribution 
to the philosophy of science. The Model reflects how science 
philosophy is applied to mathematics. In other words, the Model 
is a reflection of the process of doing science.
In light of Stylianides’s (2007) definition of the proof, Conner 
and Krejci (2022) assert that reasons, generality, clarity, and 
structure are the  four essential components of proof. Since 
the  Model includes these essential components, it serves as 
a representation of the proving process. Furthermore, the Model 
was designed to allow for both individual and group work, as well 
as the usage of dynamic geometry software. Nonetheless, within 
the parameters of the proposed model, the reciprocal exchange of 
proof drafts among the various groups, along with the provision 
for offering suggestions for amendments to the proofs, followed 
by a whole-class discussion regarding the proofs, is designed to 
facilitate the alleviation of the challenges encountered in writing 
proof. The stages and main principles of the ISMAT Model are 
presented in Figure 1.

Figure 1: Stages and main principles of the ISMAT model (Ozturk, 2016)
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The Purpose of the Study
Research (e.g., Moore, 1994; Stylianides, Stylianides & 
Shilling-Traina, 2013; Weber, 2001, 2006) indicates that 
students encounter considerable challenges in writing 
mathematical proofs in steps, even at the university level. 
Students exhibit notable deficiencies, particularly in 
employing logical connections among the  steps of proof 
and utilizing mathematical language (Ko & Knuth, 2009; 
Miyazaki, Fujita, & Jones, 2016). Indeed, these deficiencies 
have been informally noted by the researchers of this study 
over an  extended period, as they have been facilitating 
Euclidean geometry courses for numerous years. These 
insights significantly motivated the  researchers to execute 
the  ISMAT Model within an  authentic classroom setting 
and to assess its outcomes. This study aimed to examine 
the  effect of the  ISMAT Model on pre-service teachers’ 
proof-writing skills.

METHODOLOGY
Research Design
This study investigates the  impact of the  designed 
learning environment on pre-service mathematics 
teachers’ proof-writing skills, assessing these skills both 
pre- and post-instruction, and analyzing the  relationship 
between potential skill changes and the  proposed model. 
An  experimental approach was thus employed. At this 
point, a  quasi-experimental study comparing two groups 
where only one is exposed to the ISMAT Model would be 
somewhat explanatory in terms of the proof-writing skills. 
However, controlling all variables except the  instructional 
model for more than one group was quite difficult, making 
it challenging to draw inferences about the  reasons for 
the change. Besides, the characteristics of the course were 
a threat to a quasi-experimental design due to the challenges, 
such as restricting communication between groups. By 
the  way, we could apply interviews through the  change, 
which involves obtaining quantitative data, and try to 
uncover the underlying reason for the change.

Participants
Every year in Turkey, students at all K–12 levels are 
introduced to geometry concepts before attending university. 
Examining the  characteristics of geometric shapes and 
objects in middle school replaces traditional geometry 
teachings, which focus on identifying geometric shapes and 
objects, particularly in the early years of education, known 
as the primary school years. In the last four years, also known 
as high school, in addition to investigating the  properties 
of geometric shapes and objects, elements such as proofs 
of basic relations and geometric drawings are included. In 
geometry courses, students are given exercises and problems 
that require the application of geometric object properties, 
as the  Turkish educational system employs a  centralized 
exam system for admission to reputable high schools and 
universities. Students cannot experience formal proof-
writing activities in these courses, which are structured by 
centralized assessments. Students are first exposed to proofs 
in a  formal sense in university mathematics and teaching 

programs, which are typically entered through central 
exams. As a result of the central exam, the study’s sample 
consists of first-year students attending the  mathematics 
teaching program at a  university with a  medium level of 
success in the central exam.
The experimental implementation of the  proposed 
model was conducted within the  scope of the  “Euclidean 
Geometry” course, taught in the first year of the program. 
In this context, the study sample consisted of a total of 60 
pre-service mathematics teachers, divided into two groups: 
32 in the experimental group (27 girls and five boys) and 28 
in the control group (15 girls and 13 boys).
This retrospective research involving human participants 
was in accordance with the  ethical standards of 
the  institutional and national research committees. 
The  Social and Human Sciences Ethics Committee of 
Karadeniz Technical University approved this research. 
(Ref. No. 82554930/400-1259)

Data Collection Tool
The data were collected through a  “proof-writing test” 
(PWT). However, upon examining the  proof-writing 
tests, certain responses from pre-service teachers were 
ambiguous and lacked clarity, prompting subsequent 
interviews for further elucidation of their answers.
Each interview was conducted with a  cohort of six pre-
service teachers. The  selection process for the  pre-
service teachers participating in the  interviews was 
predicated on pre-test outcomes and the  principle of 
voluntary participation. The  duration of each interview 
was approximately 40 minutes, conducted in a  setting 
that fostered comfort for each pre-service teacher, and 
incorporated various proof-writing activities. Furthermore, 
the interviews were administered on an individual basis to 
mitigate the potential for inter-participant influence among 
the pre-service teachers.

Proof-Writing Test

Two separate proof-writing tests were administered as 
both a  pre-test and a  post-test, preceding and succeeding 
the experimental intervention, to evaluate the proficiency of 
pre-service teachers in the  domain of proof writing. Pre-
service teachers were administered the Proof Writing Pre-
Test (PWPRE), which comprises 12 questions, to assess their 
initial skills in proof-writing before the intervention. They 
were subsequently administered the Proof Writing Post-Test 
(PWPOST), also comprising 12 questions, to evaluate their 
proficiency following the  intervention. The  proof-writing 
questions contained within the PWPRE were meticulously 
designed to gauge students’ existing proficiency before 
the  intervention. They were intended to be addressed 
employing the  foundational geometry knowledge they had 
amassed during their high school education. In contrast, 
the  proof-writing questions of the  PWPOST, aimed at 
evaluating the  students’ advancement post-intervention, 
were formulated such that they could be addressed utilizing 
both their high school knowledge and the  newly acquired 
information from the Euclidean geometry course.
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The initial phase in formulating the PWPRE and PWPOST 
tests involved selecting pertinent questions sourced from 
both university-level and high school textbooks, as well as 
from existing literature. In the process of selecting questions, 
consideration was given to the general high school curriculum 
for the pre-test and the content of the Euclidean Geometry 
course for the  post-test, with a  concerted effort made to 
ensure a broad scope in the  coverage of the questions. To 
facilitate the preparation of the tests, two researchers holding 
doctoral degrees in mathematics education were solicited 
for their expert recommendations. Following revisions to 
the questions based on their feedback, a cohort of 45 pre-
service teachers participated in a  pilot implementation to 
assess the  reception of the  tests by the pre-service teacher 
population. Adjustments were made, and the questions were 
refined as a direct consequence of the pilot implementation.

Following the  pilot implementation, it was determined 
that one of the problems included in the pre-test should be 
substituted with an alternative problem, as it was perceived 
to be overly challenging for pre-service teachers who had 
only recently graduated from high school, thereby failing 
to fulfill the  research objectives. In the  post-test, it was 
considered judicious to eliminate the  problem due to its 
requirement for direct engagement with the  mathematical 
relationship delineated in the  problems, which did not 
necessitate a sequence of proof steps. Nevertheless, it was 
deemed beneficial to incorporate a  different problem into 
the  post-test. Upon identifying that the  duration allocated 
for completing these assessments was inadequate in the pilot 
implementation, it was resolved that the examination time 
for both assessments would be extended to 120 minutes. 
Figure 2 delineates the development process of the tests.

Figure 2: Procedure for creating proof-writing tests

Table 1 presents the  detailed content of the  questions in 
the  PWPRE and PWPOST, as well as the  prior knowledge 

required to demonstrate the  mathematical relationships 
specified in the questions.
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Process
The implementation occurred within a geometry course. Certain 
geometrical topics were covered during this course. Weekly 
proof-writing activities were conducted for the  experimental 
group. These activities employed the  ISMAT Model through 
collaborative group work. Each group was composed of three 
pre-service teachers. The  control group’s practices varied in 
that they did not incorporate proof-writing activities. Instead, 
direct mathematical statements were provided for proof-writing. 
However, classroom discussions focused on the  proofs, with 
the instructor as the sole user of the dynamic software. Figure 3 

illustrates the implementation process of a proof-writing activity.
At the  conclusion of the  implementation process, a  post-test 
was administered to assess the  pre-service teachers’ proof-
writing skills. The treatment duration for each group spanned 
14 weeks, encompassing both the  proof-writing assessments 
and the introduction of the GeoGebra software. Subsequently, 
the data were analyzed comprehensively and interactively.
Table 2 serves as an  illustrative example demonstrating 
the  implementation process of a  proof-writing activity 
accompanied by comprehensive explanations of 
the respective stages.

Test Geometric Figure Content Prior Knowledge*
PW

PR
E

ABC is an isosceles triangle, ( ) 0m A   ˆ 120= . 
Given that the straight lines t and z are 
the perpendicular bisectors of [AB] and [AC] 
respectively, and that

[ ] { }t BC D ,∩ = [ ] { }z BC E∩ = , prove that 
|BD| = |DE| = |EC| with your justifications.

The definition of an isosceles triangle
The properties concerning secondary 
elements.

PW
PO

ST

The midpoint of the hypotenuse of the isosceles 
right triangle ABC is D. Points E and F are located 
on the sides [AB] and [AC], respectively, such that 

( ) 0m EDF   90= . Prove that ( ) ( )A ABC   2.A AEDF=  
with your justifications.

The definition and properties of 
an isosceles triangle
The angle-side-angle congruence 
theorem.

*The knowledge that pre-service teachers can be used for proof-writing the problems.
Table 1: Explanations for some questions in the PWPRE and PWPOST

Figure 3: Typical course sequence based on the ISMAT model
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Table 2: Implementation process of a proof-writing activity based on the ISMAT Model
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Data Analysis
A  modified version of Senk’s (1983) 5-level scoring chart 
was utilized to assess data from proof-writing tests. This 
chart encompasses reasoning and mathematical language 
dimensions, allowing for integrated evaluations. While 
proof-writing entails various skills, including reasoning and 

justification, we posited that isolating these dimensions would 
yield more precise evaluations. Accordingly, the Reasoning 
Process was determined as one of the dimensions of the re-
created scoring chart. Table 3 presents the categorical scoring 
chart formed to determine the  pre-service teachers’ proof-
writing skills.

Reasoning Process
(RP)

0-	 S/he left it blank.
	 S/he wrote the hypothesis and conclusion in detail.
	 S/he came up with irrelevant statements or inferences that did not contribute to the proof.
1- 	 S/he made at least one correct independent inference.
	 S/he made his/her inference based on a case. However, while doing this, s/he was unable to 

provide sufficient justification.
	 S/he made at least one inference starting from the conclusion.
2- 	 S/he made successive inferences supporting one another. However, s/he failed to attain the result.
	 S/he attained the result through successive inferences based on a special case.
	 S/he attained the result, but s/he did not formally justify the steps s/he took in the process of 

reaching it, or just provided an incorrect justification.
3- 	 S/he attained the result, but while some of the proof-writing steps were justified, others were not.
	 S/he attained the result and justified a considerable part of the proof-writing steps. However, s/he 

made mistakes in some words and names of some theorems.
4- 	 S/he attained the result by justifying each proof-writing step.

Table 3: Categorical scoring chart for evaluating proof-writing skill in terms of the reasoning process

The pre-service teachers’ proofs were first examined using 
the categorical scoring chart to identify the effect of the learning 
environment, based on the  ISMAT Model, on their proof-
writing skills. Examinations were conducted to evaluate inter-
researcher agreement on coding reliability proof related to 
the test. A random sample of 30% was selected from the papers 
of both groups for these examinations. Before the evaluations, 
the  categorical scoring rubric was presented to the  other 
researcher, accompanied by clarifications and examples of 
indicators. The examinations indicated an 83% concordance in 
coding between the researchers. Follow-up discussions addressed 
coding inconsistencies, leading to necessary adjustments. 
An  example of data analysis for PWPRE and PWPOST, as 
shown in the chart below (see Table 4), is provided.
The scoring for each question on the PAPRE and PAPOST 
was recorded in an  Excel file and transferred to Winsteps 
for analysis. The points given to the proofs of the problems 

in the  tests through this program were converted into 
linear points through Rasch analysis. These linear points 
were the  pre-service teachers’ achievement points. Rasch 
analysis was used to overcome the problems likely to result 
from the fact that the differences between the categories on 
the  scoring chart were not equal. Statistical analyses were 
made with the  linear points obtained through the  Rasch 
analysis. The  Mann-Whitney U test was used to determine 
whether there was a  statistically significant difference in 
reasoning achievement between the experimental and control 
groups before the  experiment. This test was chosen due to 
the independence of groups and the non-normal distribution 
of achievement points. Covariance analysis was conducted 
to assess the  significance of the  difference in reasoning 
achievements between the  experimental and control groups 
after the experiment, and to determine if this difference was 
due to the experimental conditions.

Test Proof for PWT Data Analysis

PW
PR

E

By stating the congruence of the triangle, it was 
written as [ ] [ ]≅BFD AFD . A similar notation 
was preferred when writing the congruence of 
the EGC and ELC triangles. Instead of writing 
|AE| = |DE|, it was stated as [AE] = [DE]. For 
the other side of equality, it was also stated 
with this symbol. In the proof, there are only 
deficiencies in the mathematical symbols. 
Therefore, this proof belongs to RP3.
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RESULTS
Results Concerning the  Pre-service Teachers’ 
Proof-Writing Skills before the Experiment
The pre-service teachers’ proofs in the pre-test were evaluated, 
and then each of their proof-writing skills was determined. 
Table 5 presents the  frequency and percentage distribution 
obtained from evaluating the proofs in PWPRE.
As Table 5 indicates, 39% of the  experimental group proofs 
and 51.47% of the control group proofs were categorized as 
RP0 before the experiment, denoting a predominance of proof 
in this category among pre-service teachers. A  significant 
number of these proofs merely restated the problem without 
generating inferences. Instances also occurred where pre-
service teachers either omitted responses or included irrelevant 

statements that did not contribute to the proofs. Furthermore, 
31% of the experimental and 28.8% of the control group proofs 
fell into RP1, which succeeded RP0. The  majority of RP1 
proofs in both groups (21.6% experimental, 19.35% control) 
included at least one correct independent inference, indicating 
a transition from RP0 to RP1, with a focus on hypothesis and 
conclusion details. Some instances contained inferences based 
on cases without sufficient justification, although at least one 
inference from the conclusion was made, albeit less frequently 
than correct independent inferences. Inferences from 
the conclusion were limited in occurrence across all reasoning 
process categories in both groups. Figure 4 illustrates a proof 
that corresponds to RP1, which was the most prevalent case in 
both groups before the experiment, following the identification 
of details on the hypothesis and conclusion.

Test Proof for PWT Data Analysis
PW

PO
ST

In the proof, the chain of inference is written 
appropriately. All the justifications between 
inferences were stated. Besides, when writing 
proof steps, mathematical language is taken into 
consideration. Therefore, this proof is in RP4.

Table 4: Example of data analysis for PWPRE and PWPOST

Categories
Experimental Group Control Group

f % f %
RP0 150 39.00 173 51.47
RP1 119 31.00 97 28.88
RP2 70 18.30 45 13.39
RP3 27 7.00 16 4.77
RP4 18 4.70 5 1.49

Table 5: Frequency and Percentage Distribution Before the Experiment

The pre-service teacher illustrated the  measure of arc AB 
because angle ACB is inscribed in it. However, she incorrectly 
inferred that line segment TC was a tangent and that the bisector 
of angle BTA passed through the circle’s center, despite only 
one tangent being drawn from point T. Consequently, she 
believed that ray TR bisected arcs AB and AC equally, leading 
her to assume she had established the specified mathematical 
relationship. Thus, she presented a proof containing both correct 
and incorrect inferences, including at least one valid conclusion. 
The interview revealed her familiarity with the mathematical 
statements employed in her proof and the requisite actions, yet 
she struggled to articulate them effectively.

Some proofs by pre-service teachers fell into RP2. The  control 
group produced fewer proofs in this category than the experimental 
group. While they made necessary inferences, they occasionally 
lacked formal justification or provided incorrect justifications. 
A  similar pattern was observed in cases involving inferences 
from special cases. Additionally, in RP2 proofs, some pre-service 
teachers failed to make mutually supportive inferences, though this 
was less common across both groups compared to other RP2 cases. 
Before the experiment, pre-service teachers produced proofs in RP2 
mainly when they could draw a conclusion. Therefore, when able to 
make the necessary inferences, they provided proofs that contained 
reasoning gaps. Figure 5 illustrates one proof corresponding to RP2.
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As illustrated in Figure 5, the  pre-service teacher defined 
the  triangle EBF’s area as S and deduced the equality of areas 
for triangles DAE and DEB; she calculated triangle DEF’s area 
as 4S - (B + C) based on her notation; she concluded the area of 
triangle DEF is 3S; and the area of parallelogram ABCD is 8S. 
Despite making all the necessary inferences for the mathematical 
proof, she failed to provide justifications for these deductions. 
The interview revealed her awareness of her reasoning processes; 
she attributed her lack of justification to her prior experience of 
solving problems rapidly in mathematics courses.
The experimental group of pre-service teachers demonstrated 
a higher frequency of proofs in RP3 (7%) than the control 
group (4.77%). Justifications for selected proof-writing 
steps were more common than complete justifications for all 
steps. Instances of substantial step justifications with errors 
in terminology occurred, though these were less frequent. 
In RP4, where all inferences required for proof-writing 

were justified, the experimental group had a  rate of 4.7%, 
compared to 1.49% in the  control group. Nevertheless, 
the  overall rate for this category was lower than that of 
other categories. Higher reasoning process categories (RP2, 
RP3, RP4) were observed less frequently in both groups 
than lower-level categories. This suggests that pre-service 
teachers struggled to identify all necessary proof-writing 
steps. It also reflects a  deficiency in skills for justifying 
proof-writing steps or a perceived lack of necessity for such 
justifications. The  infrequency of complete inferences and 
justifications indicates inadequate preparation for proof-
writing before the experiment.
The Mann-Whitney U test, a non-parametric measure, was 
applied to the pre-test data to determine whether there was 
a statistically significant difference between the experimental 
and control groups in terms of reasoning achievement before 
the experiment. Table 6 presents the results of this test.

Figure 4: Example of a proof corresponding to RP1

Figure 5: Example of a proof corresponding to RP2

Group N Mean Rank Rank Sum U p
Pre-Test Experimental 32 38.03 1217 207 0.000

Control 28 21.89 613

Table 6: Result of the Mann-Whitney U Test
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Table 6 reveals that, prior to the  experiment, there was 
a  significant difference between the  experimental group 
and the  control group in terms of achievement in reasoning, 
favoring the former (U = 207, p < 0.05).

Results Concerning the  Pre-service Teachers’ 
Proof-Writing Skills After the Experiment
The pre-service teachers’ proofs in the post-test were evaluated, 
and then each of their proof-writing skills was determined. 
Table 7 presents the  frequency and percentage distribution 
obtained from evaluating the proofs in the PWPOST.
After the  experiment, the  proportions in RP0 were 14.06% 
in the  experimental group and 43.45% in the  control group. 
This suggests that the control group predominantly provided 
proofs in RP0. Conversely, the experimental group exhibited 

a significant reduction in RP0 proofs relative to the baseline, 
highlighting a  notable disparity between the  groups. 
The  proofs in RP1 were 31.78% in the  experimental group 
and 36.31% in the control group. Despite being less frequent 
in the  experimental group, RP1 had the  highest proportion 
among its categories. Most RP1 proofs in both groups involved 
“making at least one correct independent inference.”
The RP2 category was more prevalent in the  experimental 
group (27.08%) compared to the control group (12.2%). Despite 
its higher occurrence in the  experimental group, the  case of 
“failing to attain the result by making inferences that support 
one another” was common in both groups. This indicates that, 
post-experiment, pre-service teachers increasingly focused on 
the interconnections of inferences during proof-writing. Figure 
6 illustrates a proof example related to RP2.

Categories
Experimental Group Control Group

f % f %
RP0 54 14.06 146 43.45
RP1 122 31.78 122 36.31
RP2 104 27.08 41 12.2
RP3 65 16.92 22 6.55
RP4 39 10.16 5 1.49

Table 7: Frequency and percentage distribution after the experiment

Figure 6: Example of a proof corresponding to RP2

As illustrated in Figure 6, the  pre-service teacher inferred 
|DT| = |TE| from a tangent at point T. She established angles 
TDO and TEO as 90 degrees, based on the perpendicularity 
of the  radius to the  tangent. She deduced that angles DTO 
and ETO are equal because the  line segment TF intersects 
the  center of the  circle. Consequently, she claimed that arcs 
DB and BE, as well as arcs DC and EC, were equal in measure. 
Additionally, she posited that angle BAC measures 90 degrees, 
justifying her assertion by its opposition to the  diameter of 
the  circle. Thus, she constructed a  series of interconnected 
inferences. Nevertheless, her proof remained incomplete due 
to her omission of necessary concluding inferences.

The RP3 category proofs were more frequent in the experimental 
group (16.92%) than the control group (6.55%). Control group 
students exhibited a significantly lower percentage of RP3 proofs 
relative to their experimental counterparts. In both cohorts, 
the  predominant proofs involved justifying certain steps in 
the proving process, with greater frequency in the experimental 
group. Limited instances of proofs that justified substantial steps but 
included errors in terminology were exclusive to the experimental 
group. This suggests that post-experiment, pre-service teachers, 
particularly in the experimental group, recognized the necessity 
for justifying their inferences related to proofs. Figure 7 illustrates 
an example of a proof relevant to RP3.
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As illustrated in Figure 7, the pre-service teacher articulated that 
( )m DKC α=  by asserting the parallelism of line segments DA 

and CB, attributing this to quadrilateral ABCD being a square. 

He failed to justify the operation “
2

AK a
AK x y a

=
+ +

”, which

he executed based on his personal interpretation of letters 
and supplementary drawings. He indicated that the operation 
he initiated as “ ( ) ( )2 22 2x x y x y+ + = + ” was predicated 
on the letters assigned to the side lengths in accordance with 

the Pythagorean Theorem. Thus, while he provided rationales 
for certain inferences made during the  proof, he omitted 
justifications for others.
The experimental group showed a proof rate of 10.16% for RP4, 
while the control group exhibited a rate of 1.49%. Nevertheless, 
both groups had lower rates in this category compared to others. 
Additionally, the control group showed no change in RP4 proof 
rates pre- and post-experiment. In contrast, the  experimental 
group experienced an increase in RP4 proof rates. An illustration 
of an RP4 category proof is presented in Figure 8.

Figure 7: Example of a proof corresponding to RP3

Figure 8: Example of a proof corresponding to RP4

As illustrated in Figure 8, the pre-service teacher asserted 
that the ratio of the triangles DFB and HFC was equivalent, 
leading to the conclusion that line segments AB and CH are 
parallel. She claimed that the  lengths of segments BD and 
CH were identical and provided sound reasoning for this 

conclusion. Her assertion of the parallelism of sides GF and 
EH, based on the side length ratio, constituted a valid step 
in the  proof. She established angle measures accordingly 
and deduced that angle ECH is 90 degrees, offering a well-
founded justification for this inference. Her utilization 
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of the  Pythagorean Theorem, predicated on this angle 
measurement, represented a legitimate and conclusive step 
in the proof. Consequently, she delivered a comprehensive 
proof in RP4 by articulating each necessary inference and 
thoroughly substantiating each assertion.
According to the  categories of the  reasoning process, 
the comparison of the proof rates for the experimental and control 
groups before and after the experiment is shown in Figure 9.
As Figure 9 demonstrates, the  experimental group 

primarily produced proofs in all reasoning categories 
except RP0 prior to the  experiment. Post-experiment, 
the  control group favored proofs in RP0 and RP1, while 
the experimental group dominated in RP2, RP3, and RP4. 
The  control group showed a  higher prevalence of non-
proof statements compared to the  experimental group. 
In contrast, the  experimental group presented a  larger 
number of statements with proof quality, despite some 
shortcomings in mathematical language or justification.

Figure 9: Radar graph for comparison of the groups’ proof rates before and after the experiment

An analysis of covariance (ANCOVA) was carried out 
using the  pre-test scores as the  “covariate” to determine 
whether there was a  significant difference between 
the  groups’ post-test scores concerning their achievement 
in reasoning, and if so, whether such a  difference really 
resulted from the experimental conditions. Table 8 presents 

the  descriptive statistics for the  mean post-test scores, 
along with the  reasoning behind the  calculations, as well 
as the  adjusted mean post-test scores. Table 9 presents 
the  results of the  ANCOVA, demonstrating whether 
the difference between the adjusted mean post-test scores of 
the groups is statistically significant.

Post-Test Score Adjusted Post-Test 
Score 

Group n X̄ SD X̄a SH
Experimental Group 32 0.35 0.47 -0.129 0.152
Control Group 28 -0.84 1.35 -0.652 0.163
Total 60 -0.37 1.07

X̄a: Adjusted Mean Post-Test Score
Table 9: ANCOVA results concerning the post-test scores concerning achievement in reasoning in the proving process

Source of 
Variance 

Sum of 
Squares Sd Mean 

Square F Level of 
Significance

Effect Size 
(eta-square)

Pre-test 16.277 1 16.277 23.144 0.000 0.289
Method 3.681 1 3.681 5.234 0.026 0.084
Error 40.089 57 0.677
Total 76.111 60

Table 8: Descriptive statistics of the post-test scores concerning the experimental and control group students’ achievement in reasoning 
in the proving process
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According to the results of the ANCOVA, as shown in Table 
9, there was a  statistically significant difference between 
the  post-test scores of the  experimental group and those 
of the  control group when the  two groups’ pre-test scores 
were controlled (F(1, 57) = 5.234, p < 0.05). In other words, 
the  improvement in the  pre-service teachers’ achievement 
in reasoning was associated with the  activities carried out 
in the  learning environment based on the  ISMAT Model. 
Accordingly, the lessons on proof conducted in the learning 
environment designed for the  experimental group 
contributed to the improvement in the pre-service teachers’ 
achievement in reasoning.

DISCUSSION AND CONCLUSION
Progress in pre-service teachers’ reasoning was observed 
within the  ISMAT Model. The  experiment revealed a  decline 
in proofs for the lower reasoning categories (RP0, RP1), while 
proofs for the  higher reasoning categories (RP2, RP3, RP4) 
increased. The experimental group experienced a decrease from 
39% to 14.06% in the RP0 category, representing a  reduction 
of more than 50%. Conversely, the control group experienced 
a minor decrease from 51.47% to 43.45% in the same category. 
The experimental group exhibited significant changes compared 
to the control group. This may be attributed to the researcher’s 
emphasis on distinguishing between given conditions and 
required proofs. Consequently, pre-service teachers faced fewer 
challenges in initiating mathematical proofs. The rate of cases 
corresponding to RP0 decreased from 39% to 14.06%, indicating 
an  increase in proof attempts. The success in initiating proofs 
likely bolstered their confidence and reduced their inclination 
to leave questions unanswered. It can be posited that heightened 
motivation and positive emotions facilitated deeper study and 
enhanced learning efforts (Heinze & Reiss, 2009). Although 
some proofs remained incomplete, increased self-confidence 
fostered a reasoning mindset that initiated the process of proving. 
Thus, post-experiment, pre-service teachers employed various 
reasoning methods to initiate proofs. Moore (1994) suggested 
that a lack of conceptual understanding can hinder the initiation 
and execution of proof. In alignment with this, the current study 
indicates that the pre-service teachers’ conceptual understanding 
improved through the use of the ISMAT Model.
The proportion of proofs in RP2 increased from 18.3% to 
27.08% post-experiment. This indicates that the  experimental 
group improved in identifying all the necessary steps required to 
complete the  proof. Consequently, a  transformation occurred in 
the integration of supporting inferences into a cohesive presentation. 
This shift likely enhanced the pre-service teachers’ reasoning skills, 
fostering a  comprehensive perspective. This finding aligns with 
previous research indicating that reasoning improvement activities 
positively influence learners who initially exhibited inadequate 
proof explanations (Driscoll, 1987; Lee, 1999; Mata-Pereira & da 
Ponte, 2017; Moore, 1994; Schoenfeld, 1985).
The occurrence rate of proofs in RP3 increased from 7% to 
16.92% post-experiment. This denotes a  more than two-fold 
enhancement in proof occurrence. It suggests that pre-service 
teachers recognized the significance of justifying their inferences 
and integrating various inferences cohesively. Additionally, it 
indicates a  tendency to scrutinize the basis of their expressed 

inferences. Pre-service teachers exhibited increased awareness 
of mathematical expression utilization. Such advancements 
likely stemmed from discussions surrounding the mathematical 
expressions and justifications presented during the  proving of 
relationships. These improvements may have been promoted by 
discussions in the experimental group regarding the suitability 
of expression, grounds for inferences, and the  relevance of 
justification. Lee (1999) articulated that prompting students to 
elucidate their reasoning enhances their proof-writing skills. 
Nonetheless, the proof count in RP3 fell short of expectations, 
possibly due to some group members merely observing and 
recording rather than actively engaging. Students who did not 
critically engage with the  proof steps may not have achieved 
the same advancements in individual proof-writing assessments.
The occurrence rate of proofs in RP4 increased from 4.7% to 
10.16%, indicating a  significant rise. This suggests that pre-
service teachers enhanced their awareness of the  necessary 
inferences for proofs and justifications. Their improved 
expression of inferences and justifications reflects a  solid 
grasp of reasoning processes. This progress likely stemmed 
from the experimental learning environment, which facilitated 
discussions on the correctness and relevance of inferences and 
justifications. However, these advancements were insufficient, 
potentially due to a  lack of focus on improving spatial skills, 
such as drawing. Consequently, the  anticipated increase in 
proofs may not have materialized, as additional drawing 
questions would require deeper, multi-dimensional reasoning. 
Additionally, some pre-service teachers’ increased efforts in 
group work to identify and justify proof-writing steps may have 
influenced these outcomes.
The frequency of higher reasoning proofs (RP2, RP3, RP4) 
among pre-service teachers increased post-experiment. 
This indicates that the  ISMAT Model learning environment 
enhanced their reasoning in the  proving process. Control 
group proof data from before and after the experiment further 
corroborates this finding. Notably, proofs in RP0 were most 
prevalent after the  experiment, followed by RP1. While 
a  minor rise in RP3 proofs was observed, RP2 experienced 
a decline, and RP4 remained stable. This suggests that proof 
teaching for the  control group had minimal impact on their 
reasoning. Consequently, the  experimental group’s proof 
teaching effectively improved their reasoning skills. Previous 
research has similarly highlighted that various educational 
strategies fostered student reasoning development (Erdem, 
2015; Francisco & Maher, 2005; Generazzo, 2011; Hiebert 
& Grouws, 2007; Hsu, 2010; Lee, 1999; Martin & McCrone, 
2009; Pulley, 2010; Reiss, Hellmich & Reiss, 2002).
Proof evaluation activities enhance students’ reasoning, 
aligning with Pulley’s (2010) findings that such activities 
dispel misconceptions and strengthen understanding of 
mathematical proofs. These activities are pivotal for pre-
service teachers, facilitating the  analysis of peer proofs, 
comparison with their own inferences, and fostering 
awareness of diverse proof-writing techniques.
We assert that the pre-service teachers’ presentations may have 
transformed their reasoning through exposure to diverse proof-
writing techniques. This assertion is corroborated by various 
studies (e.g., Generazzo, 2011; Pulley, 2010; Weber et al., 2008), 
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which indicate the  beneficial impacts of class discussions on 
the  learning process. Generazzo (2011) posits that designated 
time for class discussions can enhance both reasoning and 
proof-writing skills, fostering positive shifts in students’ 
perspectives on proof-writing. In our study, interactive group 
work, peer sharing of insights, and the opportunity to recognize 
and rectify mistakes contributed to advancements in reasoning 
during the proving process. Furthermore, numerous researchers 
emphasize the  significance of group work in proof teaching, 
noting that interactive environments facilitate reasoning 
enhancement (Generazzo, 2011; Haralambos, 2000; Lee, 1999; 
Moreno, 2003; Pulley, 2010; Tinto, 1990). Yankelewitz, Mueller 
and Maher (2010) similarly highlight that settings that promote 
peer interaction and the  expression of mathematical ideas are 
optimal for developing mathematical reasoning. In this context, 
drawing from Vygotsky’s (1978) perspective, it can be concluded 
that reasoning improvement occurs in socially interactive 
environments, as individuals are influenced by the reasoning of 
their peers (Maher & Davis, 1995).
The structural alignment of the  ISMAT Model with 
the  methodological procedures employed by professional 
mathematicians provides pre-service mathematics teachers 
with a  systematic framework for developing proofs, which 
contributes significantly to both pedagogical efficiency and 
professional accountability. Results supported by Buchbinder 
and McCrone (2023) demonstrate that structured module-
based approaches enhance pre-service teachers’ content and 
pedagogical knowledge regarding the  role of examples and 
quantifiers in proofs. The model optimizes time-to-competency 
ratios while enhancing the quality of evidence-based reasoning 
relative to initial knowledge levels, supported by Al-Sa’ad and 
Alzoebi (2024), who confirmed that systematic training programs 
based on NCTM standards produce statistically significant 
gains in teachers’ pedagogical knowledge across multiple 
dimensions. Furthermore, ISMAT’s systematic approach 
cultivates metacognitive awareness among pre-service teachers, 
aligning with the  pedagogical-metacognition model proposed 
by Kohen and Kramarski (2018), and strengthening their 
ability to identify and correct errors within their own learning 
processes. Evidence from Erdoğan and Kalkan (2024) reveals 
that metacognitive awareness explains 38% of the variance in 
critical thinking scores, supporting a transformative shift from 
passive knowledge acquisition to active knowledge construction. 

The  socio-constructivist dimension, supported by Generazzo 
(2011) and Pulley (2010) and enhanced by collaborative 
evidence-based reasoning processes emphasized by Csanádi 
et al. (2021), demonstrates that the  model extends beyond 
individual cognitive development to encompass collaborative 
mathematical discourse and peer-mediated learning experiences, 
positioning the  ISMAT Model as a  theoretically grounded, 
empirically supported, and pedagogically innovative approach 
in mathematics teacher education.
Several limitations must be recognized when analyzing these 
results. Primarily, the  research was conducted within a  single 
institution, which may limit the applicability of the findings to 
alternative educational settings characterized by diverse student 
demographics, institutional cultures, or resource availability. 
Secondly, the  hierarchical organization of the  data, with 
students organized within classrooms, may have introduced 
interdependencies that could potentially influence the statistical 
interpretations, as conventional analyses presuppose 
the  independence of observations. Thirdly, the evaluation was 
confined to assessments conducted immediately following 
instruction without any longitudinal follow-up, thereby rendering 
uncertain whether the  noted enhancements in proof-writing 
skills are sustained over time or merely indicative of transient 
improvements. Lastly, the  experimental group’s exposure to 
innovative teaching methods and dynamic geometry software 
may have resulted in enhanced performance due to Hawthorne 
or novelty effects rather than the  inherent effectiveness of 
the ISMAT Model itself. The increased attention and motivation 
from participating in a novel educational approach could have 
confounded the true impact of the intervention. Future studies 
should address these limitations through multi-institutional 
studies, appropriate statistical modeling for nested data, 
longitudinal follow-up assessments, and careful control for 
attention effects to provide more robust evidence of the ISMAT 
Model’s effectiveness in developing proof-writing skills.
Based on the  results of this research, it is recommended that 
proof teaching be grounded in real-life mathematical activities. 
Moreover, instructional models should facilitate student 
involvement in the  proving process. Additionally, since proof 
teaching is crucial at all educational levels, the ISMAT Model 
could be adapted accordingly. Consequently, further research 
is warranted to evaluate the effectiveness of the ISMAT Model 
across various educational stages.
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