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BAYESIAN DIAGNOSTICS FOR TEST DESIGN AND ANALYSIS 

Abstract
This paper attempts to bridge the gap between classical test theory and item response theory. It is 
demonstrated that the familiar and popular statistics used in classical test theory can be translated into a 
Bayesian framework where all of the advantages of the Bayesian paradigm can be realized. In particular, 
prior opinion can be introduced and inferences can be obtained using posterior distributions. In classical 
test theory, inferential decisions are based on the values of statistics that are calculated from the responses 
of subjects over various test questions. In the proposed approach, analogous “statistics” are constructed 
from the output of simulation from the posterior distribution. This leads to population- based inferences 
which focus on the properties of the test rather than the performance of specific subjects. The use of the 
JAGS programming language facilitates extensions to more complex scenarios involving the assessment 
of tests and questionnaires.
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Highlights
• This paper extends Classical Test Theory statistics to the Bayesian framework and admits inference

language (Plummer 2015) facilitates extensions to more complex 
scenarios involving the assessment of tests and questionnaires.
In Section 2, we provide the background for the typical testing 
framework involving dichotomous responses arising from 
test questions. In this context, some of the common statistics 
used in CTT are provided. This scenario is then imbedded 
into a Bayesian framework and it is demonstrated how the 
familiar testing measures can be easily translated into Bayesian 
diagnostics. Initially, a very simple prior distribution is 
introduced. In this section, we emphasize the ad- vantages of 
the proposed approach over the use of the familiar statistics 
used in CTT. We also demonstrate how missing data pose no 
difficulty.
In Section 3, we examine some real data taken from the 
aviation industry that consists of the results of multiple-choice 
questions given to pilots. We compare the traditional statistics 
with analogous Bayesian diagnostics. We also consider several 
extensions to the basic model introduced in Section 2. In 
particular, we introduce a more realistic prior which recognizes 
that some questions are more/less difficult for most respondents 
and that some respondents are stronger/weaker across most 
questions. The prior is also beneficial in that it reduces the effective 
dimensionality of the parametrization. We also indicate how 
the model can be extended to account for different instructors 
who have an effect on the performance of their students. Finally, 
we provide a discussion in Section 4 and a short conclusion in 
Section 5.

Materials and Methods
We consider test data presented in a n × k matrix X = (xij) where 
the n rows correspond to the respondents and the k columns 
refer to the test questions. The data are dichotomous (binary) 
where xij = 1(0) specifies that the ith respondent provides 
a correct (incorrect) answer to the jth question. Therefore, the 
setup is applicable to true/false questions and to multiple-
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Introduction
The important problems of test/questionnaire design and 
analysis have historically been ap- proached from either the 
perspective of classical test theory (CTT) or item response theory 
(IRT). Both of these research areas have an extensive literature 
where numerous comparative studies have been carried out (e.g. 
Hambleton and Jones 1993, Fan 1998, Guler, Uyanik and Teker 
2014, Kohli, Koran and Henn 2015, Raykov and Marcoulides 
2016).
As research developments have progressed, the distinction 
between classical test theory and item response theory has 
narrowed. However, in a very brief and perhaps oversimplified 
com- parison of the two approaches, CTT is the original testing 
framework and essentially concerns the results of test questions 
on a specific sample of respondents and has few (if any) modeling 
assumptions. One of the appealing aspects of CTT is that the 
corresponding statistics are relatively simple and guidelines 
have been introduced for the assessment of these statistics. In 
the IRT framework, more complex models are considered where 
these models have components (i.e. parameters) that distinguish 
particular aspects of tests and are generalizable to a population 
of respondents. IRT relies more on statistical theory and is less 
accessible to some practioners. IRT has grown in many directions 
where various models have been proposed. Most notably, 
Bayesian implementations of IRT now exist (Fox 2010, Levy 
and Mislevy 2016), and these require another level of statistical 
sophistication on the part of the practitioner.
In this paper, we demonstrate how some of the very simple and 
still popular statistics of CTT can be directly translated into 
a Bayesian IRT framework. The advantage to the practitioner 
is that they may continue using familiar measures but 
simultaneously take advantage of the utility of the Bayesian 
paradigm. For example, they can introduce subjective prior 
opinion (if deemed necessary) and they can view their familiar 
measures from the perspective of populations (using posterior 
distributions). In addition, the use of the JAGS programming 
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choice questions. For questions with ordinal grading, it is possible 
to introduce a threshold that corresponds to pass (fail) so that 
such questions can also be analyzed within the above framework. 
In CTT, there are various statistics that have been proposed 
to assess the characteristics of test questions and the overall 
test. We now review three of these statistics. The first statistic, 
sometimes referred to as the P-value, is calculated on each of 
the k test questions. For the jth question, its P-value is defined as

1

1 n
j iji

p x
n =

= ∑ (1)

and is the proportion of correct responses on the jth question. 
Typically, a question is not viewed as a “good” question if its 
P-value is either too close to 0 (the question is difficult) or too close 
to 1 (the question is easy). In such cases, there is little testing 
taking place since most respondents have the same result.
The second statistic that is referred to as the discrimination index 
is also calculated for each of the k test questions. For the jth 
question, its discrimination index is defined as
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where NUj is the number of `strong’ students who answered the 
jth question correctly and NLj is the number of `weak’ students 
who answered the jth question correctly. The subscripts U and 
L denote `upper’ and `lower’ respectively. The strong and weak 
students are categorized into two groups according to their 
overall test score where the test score for the ith student is given 
by . 1

k
i ijj

x x
=

= ∑ . When n is even and the order statistics x(n/2) 
and x(n/2+1) differ, then the two groups form a partition of the 
set of the n respondents. In other cases, slight adjustments are 
made in forming the two groups. The discrimination index lies 
in the interval (−1, 1) where large positive values are viewed as 
desirable (strong students do better on the question than weak 
students), values near zero indicate that the question does not 
differentiate between strong and weak students, and negative 
values are viewed as undesirable (weak students do better on the 
question than strong students).
The third statistic which is referred to as Cronbach’s alpha is 
used to describe the reliability or internal consistency of the 
overall test. It is defined as
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is the overall test variance. Cronbach’s alpha is constrained to the 
interval ( ),1−∞  where values near the upper limit are generally 
preferred (DeVellis 2012). However, we note that various 
criticisms have been made related to the above interpretation 
(Sijtsma 2009). For example, if for a given subject, the k 
questions all have the same response, then the questions are 
redundant, which is obviously not desirable. However, in this 
case, α = 1.
Before introducing the Bayesian analogue corresponding to CTT, 
there are two points that we wish to emphasize. First, although 
IRT has overtaken CTT in various ways, the CTT statistics (1), 
(2) and (3) are still widely used in practice (see for example, 
Yuan et al. 2012, Brozova and Rydval 2014). Second, as forcibly 

argued in the IRT literature (e.g. Hambleton and Jones 1993), 
an important feature of the more complex IRT models is that 
item (question) performance is linked to respondent ability. In 
other words, the results on test questions vary according to the 
strength of the student. The models and methods introduced in 
this paper preserve the simplicity of the common CTT statistics 
yet allow for the interplay between item performance and 
ability.Our approach is based on simple Bernoulli models where 
xij ~ Bernoulli(θij). The model stipulates that the probablity of 
a correct answer by the ith respondent to the jth question is 
given by

 Prob(xij = 1) = θij . (4)

An immediate reaction to (4) may be that the model is 
problematic since there are as many parameters nk as there are 
data values. However, in a Bayesian approach, prior information 
is available and parameters may “borrow” from one another such 
that the effective parameterization is reduced.
Under (4), the development of measures comparable to 
the statistics (1), (2) and (3) is straight- forward. Instead of 
calculating (1), (2) and (3) based on the data matrix X, the 
calculations are carried out on the parameter matrix Θ = (θij). 
And herein lies a possible second reaction - the θij ’s are 
unknown. How can one calculate “statistics” based on Θ? 
The answer again relies on the Bayesian formulation. Under 
a simulation-based Bayesian approach, Θ’s are generated from 
the posterior distribution, and each simulated sample gives rise 
to the analogous measures. An important added benefit is that 
we do not have a single observed statistic (p, d, α) as in CTT, 
but rather, we have a posterior distribution corresponding to our 
new measures and this facilitates the assessment of variability. 
These features and other features are emphasized in the real data 
example presented in Section 4.
There is another attractive aspect of the Bayesian formulation. 
Whereas the statistics (1), (2) and (3) refer to the observed X 
values, the Bayesian measures refer to the probabilities associated 
with the questions and the respondents. And we suggest that this 
corresponds to the real problem of interest where the properties 
of the questions/respondents is more important to practitioners 
than the particular sample. The idea of focusing on population 
quantities (i.e. parameters) rather than statistics (i.e. data) has been 
previously explored; see for example Swartz (2011) in the context 
of clustering. We also mention that there is great flexibility in the 
approach. Not only can the statistics (1), (2) and (3) be translated 
to Bayesian versions, we can do likewise with any CTT statistic.
The only additional ingredient that is required for the Bayesian 
implementation is the specification of a prior distribution on the 
parameters. Initially, we consider a somewhat unrealistic prior 
where we assume that the θij are independent and identically 
distributed (iid) Uniform (0, 1) random variables. The Uniform 
distribution is sometimes referred to as a reference prior; it is flat 
and has the required domain θij ∈ (0, 1).
Above, we alluded to simulation-based Bayesian software. 
Accordingly, we use the JAGS programming language which is 
relatively simple to use and avoids the need of special purpose 
Markov chain Monte Carlo code. JAGS is open source software 
(www.mcmc-jags.sourceforge.net) which is very similar to 
WinBUGS. Details on WinBUGS and an introduction to the 
Bayesian approach are given by Lunn et al. (2013).

Relationship of approach to IRT

Various models have been proposed in IRT. In a three-parameter 
logistic IRT model, we retain the notation above and express
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where pi is the ability parameter for the ith respondent and aj, bj 
and cj are characteristics of the jth test question.
The relationship (5) is known as an item response function (IRF). 
The IRF is an important feature of IRT and is typically plotted 
as a function of the ability pi for estimated test characteristics âj, 
b̂j and ĉj. One of the notable differences between our approach 
and IRT is that we allow more freedom in the θij parameters 
since the θij are assigned a prior probability distribution. In IRT, 
the functional relationship is fixed according to (5) or by some 
alternative IRT model. Accordingly, in our framework, measures 
such as the Bayesian P-value and the Bayesian discrimination are 
not constrained by functional relationships.

Missing data

The Bayesian model is appealing in its simplicity. Via the 
simulated parameters θij, researchers are able to investigate 
questions involving both respondents and test questions.
One of the added advantages of a Bayesian approach is the 
elegance and ease with which missing data can be handled. For 
example, there are exams where test questions are randomly 
generated from a databank for each student or subsets of 
students. In these situations, individual students answer only 
some of the questions. In this sense, there is missing data. We 
therefore distinguish between the observed data xobs and the 
missing data xmis. Letting [A | B] denote the generic conditional 
density of A given B, the relevant posterior distribution in this 
case is

mis obs mis obs, ,x x x xΘ  ∝    

[ ]obs mis, .x x Θ Θ=   
(6)

The key observation from (6) is that [ ]obs mis,x x Θ Θ    is the 
unnormalized posterior density that one would obtain if xmis 
were actually observed. Therefore, one simulates as before 
except that xmis takes the role of a random parameter rather 
than a fixed data value. To handle missing data in JAGS, we 
need only code the unobserved data values with the NA symbol. 
We emphasize that this is incredibly easy to do.

Results
We consider the results of a multiple-choice exam given to 
pilots where there are n = 307 respondents (pilots) and k = 10 
test questions. In the aviation industry, safety is of paramount 
importance, and therefore, the proportion of correct answers must 
be very high. We first calculate various CTT statistics. For this 
dataset the vector of P-values is

( )0.925,0.837,0.990,0.967,0.971,0.932,0.977,0.993,0.896,0.951p ′= .

The vector for the discrimination index is

( )0.150,0.326,0.020,0.065,0.059,0.137,0.046,0.013,0.208,0.098d ′=

which indicates that all questions are answered better by the 
stronger students than by the weaker students. Cronbach’s alpha 
is α = 0.492 which (for many researchers) indicates that the test 
is reliable.
Since the P-value and discrimination index provide properties of 
the same test, they are sometimes interpreted jointly. In Table 1, 

we provide guidelines (Skoda, Doulik and Hajerova- Mullerova 
2006) that have been proposed for a suitable test and have been 
endorsed by Brozova and Rydval (2014). Although practitioners 
may have alternative guidelines for a particular application, here 
we illustrate the utility of the proposed Bayesian with respect to 
the guidelines provided in Table 1.
We now present some results based on 1000 simulations from 
the posterior distribution. For
P-value [0.20,0.30] [0.30,0.70] [0.70,0.80]
Discrimination ≥ 0.15 ≥ 0.25 ≥ 0.15

Table 1: Recommended values for the P-value and discrimination 
index for a test question (Skoda, Doulik and Hajerova-Mullerova 

2006).

each simulation, the Bayesian P-value, the discrimination 
index and Cronbach’s alpha were calcu- lated. In Figure 1, 
we provide the joint distribution of the Bayesian P-value and 
the discrimination index for questions 1 and 2. In contrast 
to the single paired observations (p1 = 0.925, d1 = 0.612) 
and (p2 = 0.837, d2 = 0.788), Figure 1 highlights that there is 
variability associated with each measure and uncertainty is 
expressed via the posterior distribution. In each of the plots, 
we have provided bars according to the guidelines in Table 1 
which allows us to assess the suitability of the test questions. 
We observe a difference between the properties of question 1 
and question 2. For example, question 2 is more difficult (i.e. the 
cloud of points is slightly shifted to the left). We also observe 
that there is more variability in the discrimination index than 
in the P-value.
We also observe in Figure 1 that the generated P-values are 
smaller than the traditional CTT statistics p1 = 0.925 and 
p2 = 0.837. This is due to the unrealistic θij ~ Uniform(0, 1) 
prior distribution which shrinks the posterior distribution of θij 
towards 0.5. In a particular application, we may have specific 
knowledge concerning the θij values, and this knowledge can 
be incorporated into the prior distribution. We illustrate this 
flexibility in Section 4.
In Figure 2, we provide a density plot of the posterior distribution 
of the Bayesian version of Cronbach’s alpha. Again, the figure 
highlights that there is variability associated with the measure. 
One of the frequent discussion points concerning the use of 
Cronbach’s alpha is that its
interpretation is subject to the dimension of the n × k data matrix 
X. With the Bayesian version
of Cronbach’s alpha, the observed variability depends on the 
dimension of X. We note that the posterior mean 0.075 in 
Figure 2 differs from the traditional CTT statistics α = 0.492. In 
Section 4, we vary the prior and observe changes in the resultant 
posterior mean.

A more realistic prior

We now turn our attention to the development of a more realistic 
prior, one which recognizes that some questions are more/
less difficult for most respondents and that some respondents 
are stronger/weaker across most questions. The intention is 
to introduce a prior distribution that leads to Bayesian CTT 
statistics that are more in line with the traditional CTT statistics. 
This allows practitioners to use the same calibration scales with 
which they are comfortable.
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Figure 1: Posterior simulations of the Bayesian P-value and 
discrimination index for questions 1 and 2 using the iid uniform 
prior. Horizontal lines are drawn to delineate the recommendations 

from Table 1.

The suggested prior has the following assumed structure
[ ] ij

ij
θΘ  =  ∏

where

[ ] ( )2truncated Normal ,ij ijµ σΘ − . (7)

In (7), the truncation corresponds to the interval (0, 1) and the 
parameters µij and 2

ijσ  are specified according to an empirical 
Bayes procedure. The procedure first requires logistic regression 
involving the original data X where

( )0 0logit , ,ij i j i jθ β α γ β α γ= + + . (8)

Logistic regression provides us with parameter estimates 0
ˆ ˆ, iβ α  

and ˆ jγ . We then invert the logistic function and set

( )
( )

0

0

ˆ ˆ ˆexp
ˆ ˆ ˆ1 exp

i j
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µ

β α γ

+ +
=

+ + +

Figure 2: Posterior density plot of the Bayesian version of Cronbach’s 
alpha using the iid uniform prior.

To set 
2
ijσ , we make use of the Delta method applied to (8). 

After some calculations, this yields

( )( )
( )( )

02
4

0

ˆ ˆ ˆ ˆexp 2

ˆ ˆ ˆ1 exp
ij

i j

i j

β α γ υ
σ

β α γ

+ +
=

+ + +

where v̂ is the sum of the entries in the variance-covariance 
matrix corresponding to the parameter estimates.
Whereas the calculation of µij and 2

ijσ  may appear daunting 
for some practitioners, we note that the predict function can be 
used on a glm object in R to provide the values. This is most 
convenient when running the rjags package since it provides an 
interface from R to the JAGS library. In the Appendix, we see 
that the empirical Bayes procedure requires only three statements 
of code.
To check the impact of the empirical Bayes prior specification (7), 
we repeat the Bayesian analysis on the aviation dataset. Recall 

for question 1, the CTT P-value was 0.925 and the posterior 
mean of the Bayesian P-value was 0.642. With the new prior that 
takes into account student ability and test difficulty, the posterior 
mean of the Bayesian P-value is 0.912. We therefore see that 
the new value has moved towards the CTT value. Similarly, 
with Cronbach’s alpha, the CTT value was 0.492, the posterior 
mean of the Bayesian α was 0.075, and the posterior mean of the 
Bayesian α based on the empirical Bayes prior specification (7) 
is 0.201.
In Figure 3, we provide the joint distribution of the Bayesian 
P-value and the discrimination index for questions 1 and 2 based 
on the empirical Bayes prior of Section 4.2. The distribution of 
values are more in line with the CTT diagnostics. In Figure 4, we 
provide a density plot of the posterior distribution of the Bayesian 
version of Cronbach’s alpha based on the empirical Bayes prior 
of Section 4.2. Again, the distribution of values are more in line 
with the CTT diagnostic. We repeat that a main advantage of 
the empirical Bayes procedure is that it takes into account the 
difficulty of questions and the strength of the respondent.
The prior specification in (7) provides only a template of what 
can be done. For example, one could introduce alternative 
distributions. One could also introduce more knowledge about 
students and test questions by modifying the truncated-Normal 
distribution. In the Appendix, we see that the specification of 
the prior in JAGS is straightforward (e.g. one line involving the 
dnorm function).

Figure 3: Posterior simulations of the Bayesian P-value and 
discrimination index for questions 1 and 2 using the empirical 
Bayes prior of Section 4.2. Horizontal lines are drawn to delineate 

the recommendations from Table 1.

Generalizing with respect to instructors
We now demonstrate that the Bayesian framework provides 
advantages that are not available in the classical CTT framework.

Figure 4: Posterior density plot of the Bayesian version of 
Cronbach’s alpha using the empirical Bayes prior of Section 4.2.

A possible application is the assessment of instructors. For 
example, we may have L instructors who are each responsible 
for a cohort of students. In this case, every observation xij has an 
added subscript such that xijl = 1(0) denotes that the i student 
has a correct (incorrect) response to the jth question and that this 
student received instruction on this question by instructor l. We 
similarly extend the notation for the parameters leading to 
terms θijl. The above setup is also applicable to other situations. 
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For example, a comparison of different groups of students may be of 
interest where the groups are designated by the index l.
Using either the simple uniform prior or the more realistic prior 
given by (7) and (8), posterior realizations of θijl are generated as 
before. Let Sl = {θijm: m = l} and let nl be the number of terms 
in the set Sl. Then an analysis of instructors in the spirit of the 
CTT Bayesian framework can be based by calculating

..
1

l
l ijlS

ln
θ θ= ∑ (9)

which can be interpreted as the average probability of a correct 
answer for instructor l. One can compare the ..lθ  values, l = 1,..., 
L, and assess their relative magnitudes by also calculating their 
corresponding posterior standard deviations.

Discussion
The two main approaches to questionnaire design and analysis 
are IRT and CTT. Methods based on IRT require the specification 
of statistical models and permit the inferential benefits 
associated with the models. IRT is the dominant approach used 
in major educational testing initiatives (An and Yung 2014) and 
IRT software is now widely accessible including popular 
statistical packages such as SAS (Choi 2017). Much recent 
research has been carried out under the IRT umbrella and there 
are now many IRT models that can be considered for a given 
application (Cai et al. 2016).
However, despite the popularity of IRT, there are two main 
drawbacks involving IRT. First, sometimes the existing 
statistical models do not adequately characterize the special 
features of an application and the models need to be modified 
(if possible) to account for these features. In comparison to 
CTT, Hambleton and Jones (1993) describe the assumptions 
related to IRT as `strong’. Second, the sophistication of the IRT 
models in terms of model fitting and interpretation is sometimes 
beyond the technical scope of practitioners. For example, even 
the simple IRF given in (5) often poses a challenge for a non-
technical audience.
On the other hand, CTT approaches consist of few assumptions 
and are easily adopted by practitioners. These appealing features 
have led to the continuation of the use of CTT despite the lack 
of inferential capabilities under CTT. For example, in clinical 
psychology when there are fewer than 20 test items, Jabrayilov, 
Emons and Sijtsma (2016) recommend CTT over IRT for 
detecting change in individuals. In discussing CTT, Hambleton 
and Jones (1993) write that the dependence of the methodology 
on the particular test and examinees `limit the utility of the 
person and item statistics in practical test development work and 
complicate any analyses’.
The methods proposed in this paper allow practitioners to 
work under the familiar CTT approach, yet benefit from 
inferential capabilities. This is accomplished by imbedding the 
CTT structure within a Bayesian framework. The inferential 
component is accomplished via simulation from posterior 
distributions where simulated values provide population-level 
descriptions of questionnaires.
However, the greatest advantage of the proposed approach is 
its flexibility. We have seen that we can vary the prior to take 
into account subjective beliefs concerning students and test 
questions. In addition, the flexibility of applications is facilitated 
through the availability of the simulated θij values (something 
that is not immediately available in IRT). For example, we 
have shown in Section 3 how the introduction of a new subscript 
can extend an investigation to take into account the effect of 
instructors. As another example, suppose that a researcher is 

interested in the performance of students on test questions 6, 7 
and 8. Then, for the ith student, the researcher needs only keep 
track of the simulated outcomes Ti = θi6 + θi7 + θi8. Essentially, 
with the θij values, the researcher can investigate any aspect of 
interest regarding students and test questions.
Finally, we have used an empirical Bayes procedure based on 
fitting a logistic regression model according to (8). Nothing 
prevents us from using a similar procedure based on an 
alternative parametrization. For example, we could fit a logistic 
regression model according to three-parameter IRF (5). This 
would further tighten the relationship between our Bayesian CTT 
approach and IRT.

Conclusion
We have made the case that the approach developed in this paper 
may help bridge the gap between CTT and IRT, by retaining the 
simplicity of CTT and by providing the inferential advantages 
of IRT. In particular, when compared to traditional CTT, the 
proposed approach does not rely on the interpretation of 
summary statistics. Rather, variability can be assessed via 
posterior distributions.
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Appendix
Here we provide the JAGS code used in the analysis in Section 
4.2. We see that the code is straightforward and is easily 
adaptable to more complex testing problems.

# The following code reads in a test matrix and obtains 
# posterior means of various test parameters using Just 
# Another Gibbs Sampler (JAGS) through the R library 
# ’rjags’. Here we assume the realistic independent 
#   truncated normal prior. 

sink(file.path(tempdir(),”model.txt”)) 
cat(“
 model
{
for (i in 1:n)
{
for( j in 1:k)
{
x[i,j] ~ dbern(theta[i,j])
theta[i,j] ~ dnorm(mu_ij[i,j],1/pow(se.fit[i,j],2))T(0,1)
}
}
for(j in 1:k)
{
theta_dotj [ j ] <- sum(theta[, j ])
}
for( i in 1:n)
{
thetai_dot [ i ] <- sum(theta[ i, ])
}
for( j in 1:k)
{
Pvalue[ j ] <- theta_dotj [ j ] / n
}
thetai_dotbar <- mean(thetai_dot[]) mid <- (n+1)/2
Index <- rank(thetai_dot[])
for(i in 1:n)
{
for(j in 1:k)
{
G[i,j] <- step(Index[i] - mid)*theta[i, j] G_dash[i,j] <- 
step(mid - Index[i])*theta[i, j]
}
}
for(j in 1:k)
{
Nu[j] <- sum(G[, j])
Nl[j] <- sum(G_dash[, j])
discrim[j] <- 2*(Nu[j] - Nl[j])/n
}
for(i in 1:n)
{
for(j in 1:k)
{
tmp[i,j] <- theta[i,j] - Pvalue[j]
}
}
covari[1:k,1:k] <- t(tmp[,]) %*% tmp[,]
for(j in 1:k)
{
covi[j] <- sum(covari[j,])
}
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sum.cov <- sum(covi[1:k]) for(j in 1:k)
{
vari[j] <- covari[j,j]
}
sum.var <- sum(vari[1:k])

# To calculate kron = k*(1 - sum(diag(cov[,]))/sum(cov[,]))/(k-

1) eps <- pow(10,-50)
A <- (sum.var)/(sum.cov+eps) kron <- k*(1 -A)/(k-1)
}
 “, fill = TRUE) sink()
data0 <- read.csv(“data123.csv”, header=T,row.names = 
“UserID”) x <- data0[complete.cases(data0),]
long_format = matrix(ncol=3, nrow=nrow(x)*ncol(x))
for(i in 1:nrow(x))
{
for(j in 1:ncol(x))
{
k = j + (i-1)*ncol(x)
long_format[k,1] = x[i,j] long_format[k,2] = row.names(x)[i] 
long_format[k,3] = names(x)[j]
}
}
long_format = data.frame(long_format)
names(long_format) = c(“Correct”,”Respondent”,”Question”)
long_format$Respondent = as.character(sort(as.
numeric(levels(long_format$Respondent))))
# Empirical Bayes procedure
mod = glm(Correct ~ Respondent + Question,data=long_
format,family=”binomial”)
mu_ij = matrix(predict(mod,type=”response”,data=long_forma
t),ncol=ncol(x),nrow=nrow(x), byrow=TRUE)
se.fit_ij = matrix(predict(mod,type=”response”,data=long_
format,se.fit=TRUE)$se.fit, ncol=ncol(x),nrow=nrow(x),byrow
=TRUE)
n <- nrow(x) k <- ncol(x)
linedata <- list(“n” = n, “k”=k, “x” = x, “mu_ij”=mu_ij, 
“se.fit_ij”=se.fit_ij) parameters <- c(“Pvalue”,”discrim”,”theta
”,”kron”)
# We call the model above into JAGS
mult.sim <- jags.Model(file = file.path(tempdir(),”model.txt”),  
 data = linedata,
 inits = NULL, n.chains = 1,
 n.adapt = 1000)
# We update the MCMC chains 1000 times for burn-in 
update(mult.sim, n.iter = 1000)
# Sampling phase
mcmc.out <- coda.samples(mult.sim,
  variable.names = parameters, 
  thin = 1,
  n.iter = 1000)
# To get the output
output <- as.data.frame(as.matrix(mcmc.out, chains = TRUE))
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