
ERIES Journal  
volume 18 issue 3

Printed ISSN 
2336-2375

147Electronic ISSN 
1803-1617

EXPLORATION OF SPATIAL ABILITIES 
IN PRE-SERVICE MATHEMATICS 
TEACHER EDUCATION: TESTING AND 
EVALUATION

ABSTRACT
Pre-service mathematics teachers often struggle with spatial ability, which negatively affects their 
success in solving geometric problems. Evaluating and developing these abilities is therefore an 
essential part of their university education. This paper presents findings from the initial phase of 
a long-term study focused on assessing the spatial ability and conceptual knowledge of first-year 
pre-service teachers at Charles University. Each year from 2021 to 2023, newly enrolled students 
were tasked with completing tests focused on 2D and 3D geometry, classified according to specific 
subcomponents of spatial ability. The results show that the students were most successful in planar 
rotation tasks, with the tasks requiring spatial visualisation proving to be the most challenging. 
Conceptual misconceptions were identified as a key factor contributing to errors in solving geometric 
tasks. These findings highlight the need for targeted instruction and training to improve spatial 
thinking and conceptual understanding in teacher education, with a view to improving the quality 
of the geometry teaching they provide in the future.
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Highlights

•	 Tasks involving spatial visualisation pose the most difficult challenge for pre-service mathematics teachers.
•	 Planar tasks are easier for pre-service mathematics teachers than spatial ones. 
•	 Deficiencies in conceptual knowledge contribute in varying degrees to errors in spatial geometry tasks undertaken by students.

INTRODUCTION

Many students, including future mathematics teachers, face 
persistent difficulties when solving geometric problems. 
Research has repeatedly shown that geometric tasks in 
a  three-dimensional space tend to be more demanding than 
planar tasks (Ismail and Rahman, 2017). A broader study of 
1,357 students (Grades 4–9) found that even combined spatial 
abilities were insufficient to handle problems that required 
more than one step of spatial reasoning. Students’ success 
depended on the  integration of domain-specific geometric 
knowledge, such as knowledge of the  elements, properties 
and concepts of geometric figures (Fujita et al., 2020). Other 
studies have also shown that difficulties in geometry are often 
related to underdeveloped spatial abilities (Sorby and Panther, 
2020) or limited conceptual understanding (Rittle-Johnson and 
Schneider, 2015). It is important to address students’ difficulties 

with geometry learning during their university education—
especially in the case of future mathematics teachers.

Theoretical Framework
The success in solving geometric problems critically depends 
on spatial ability. Lohman (1979) describes spatial ability as 
the  ability to generate, retain, retrieve and transform well-
structured visual images. Lean and Clements (1981) define 
spatial ability as the ability to formulate mental images and 
to manipulate these images in the mind. A similar definition 
is presented by Linn and Petersen (1985), who state that 
spatial ability generally refers to the  skill of representing, 
transforming, generating and recalling symbolic, non-
linguistic information. Sorby (1999) makes a  distinction 
between spatial ability and spatial skills – spatial ability 
is considered an  innate capability for visualisation, while 
spatial skills are acquired through training and learning. 
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Nevertheless, these terms are closely interconnected; it is 
difficult to distinguish between them. In line with literature, 
the term spatial ability is used uniformly here, with the way 
in which the ability was acquired, not examined.
Extensive research on spatial ability has led to the development 
of detailed categorisations of its subcomponents. These 
categorisations have also been modified and expanded 
over time. However, there is no clear and consistent model 
for these subcomponents of spatial ability. For example, 
McGee (1979) described two major subcomponents (factors 
in his terminology) of spatial ability – spatial visualisation 
and spatial orientation. This categorisation is based on 
the mental processes used for solving certain tasks. Lohman’s 
(1979) classification consists of three basic spatial ability 
subcomponents – spatial relation, spatial orientation 
and visualisation. Carroll (1993) identified five major 
subcomponents of spatial ability – visualisation, spatial 
relations, closure speed, flexibility of closure and perceptual 
speed. The number of underlying subcomponents of spatial 
ability seems to vary across studies. However, visualisation, 
spatial relation, mental rotation and spatial orientation are 
commonly recognised as relevant subcomponents of spatial 
ability in current research (Maresch and Posamentier, 2019). 
These subcomponents are considered in the  presented 
research because they best suit the types of geometric tasks 
applied. In the following text, each subcomponent of spatial 
ability is described. We also provide examples of typical 
tasks in which it is used.
The subcomponent visualisation is usually described as 
a general subcomponent of spatial ability. This subcomponent 
is defined as the ability to think of changes in objects, changes 
in position, orientation, or internal relationships. This implies 
that we mentally manipulate or alter the imagined object or its 
components. According to Maresch and Posamentier (2019), 
this can include tasks such as mentally folding objects from 
their nets and vice versa, identifying the  opposite sides of 
a  cube from its net, folding a piece of paper and cutting it 
mentally, completing cubic nets, drawing a  net of a  solid 
figure with patterns on its sides from its 3D model, and so on.
Spatial relation is a  crucial subcomponent of spatial 
ability when assembling and organising objects in both 
two-dimensional and three-dimensional spaces. This 
subcomponent involves understanding how various parts of 
an object fit together and how these parts relate to each other 
in a three-dimensional space. This ability is essential for tasks 
that require comparing various objects, mentally manipulating 
and assembling them, and forming a complete structure from 
separate elements. Spatial relation shares some common 
features with the  visualisation subcomponent but demands 
a more specific kind of mental manipulation, with emphasis 
placed on the  arrangement and interaction of parts within 
a  whole object. Typical tasks, which can be included here, 
are the  problem of packing luggage (figuring out the  most 
efficient arrangement of items), finding the  matching parts 
from shown structures which can be used to fill another given 
structure, cutting objects into two parts, building models 
from small cubes, which involves calculating the number of 
cubes needed, and so on.

Mental rotation is a  subcomponent of spatial ability 
involving the  ability to imagine the  rotation of both two-
dimensional and three-dimensional objects. Mental rotation 
tasks typically require the  identification of geometric 
objects, often presented in various positions, and their mental 
rotation. A common challenge is determining whether two 
rotated objects are identical (the classical Mental Rotation 
Test), finding one different object among others, rotating 
an  object around an  axis, determining around which axis 
the object must be rotated to get to the new position, and 
so on. Furthermore, these tasks usually test the speed with 
which the problem is solved.
Spatial orientation is a subcomponent of spatial ability which 
is required for mental orientation in a three-dimensional space. 
This ability involves understanding and mentally moving 
around a spatial arrangement of objects. This aspect requires 
individuals to imagine an object’s appearance from various 
viewpoints. This means that instead of moving the  objects 
in our minds, we mentally shift our own perspective. Tasks 
assessing spatial orientation often include determining 
the viewpoints in a 3D map, figuring out from which direction 
relative to the initial one we observe an object, and given a top 
view of a parking lot with labels, deciding how these labels 
would appear when viewed from different perspectives.
Currently, researchers also focus on the  identification and 
description of strategies for solving geometric problems. 
Traditional research methods regarding subcomponents of 
spatial ability typically assume that tasks within a  specific 
category are solved using the  same intended strategy. 
However, based on the  findings in literature (Maresch and 
Posamentier, 2019; Kozhevnikov and Hegarty, 2001) and 
our own experience working with students, it is evident that 
geometric tasks are approached differently by individuals. 
We designed a  test with geometric tasks, keeping in mind 
our aim to assess specific subcomponents of spatial ability. 
While these tasks were primarily designed to test specific 
subcomponents of spatial ability, dividing them into strictly 
defined categories can prove challenging. For example, it is 
possible that the  categories overlap, meaning a  single task 
may assess more than one subcomponent of spatial ability. 
Consequently, the boundaries between task categories cannot 
distinctly be set, reflecting the  individualised approaches 
of students in problem-solving, as is highlighted in other 
research publications (Carroll, 1993; Kozhevnikov and 
Hegarty, 2001). This realisation underscores the complexity 
of spatial ability assessment, revealing that while tasks are 
designed with specific spatial ability in mind, they often 
intersect across multiple spatial ability domains.
Spatial ability is a  crucial aspect of intellectual ability. 
Research has shown that regular training can significantly 
strengthen this skill. A number of scientists support the idea 
that targeted interventions can improve spatial ability and 
have explored effective methods for its development (Gold 
et al., 2018; Lowrie et al., 2019; Prieto and Velasco, 2010; 
Šafhalter et al., 2022; Sorby and Baartmans, 2000).
Spatial ability and its subcomponents are usually evaluated 
through standardised tests. These tests typically focus on 
a  specific aspect of spatial ability, requiring participants 
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to solve similar tasks that vary in complexity. In certain 
tests, researchers not only evaluate the  accuracy of 
participants’ responses but also take into account the speed 
at which they answer. One well-known test is, for example, 
the Mental Rotations Test (Vandenberg and Kuse, 1978) or 
its redrawn, modified version, called MRT-A (Peters et al., 
1995). These tests assess the  mental rotation component 
of spatial ability. Although other tests exist, none of them 
were suitable for our research. However, they provided 
inspiration for developing a  completely new test for our 
students. The primary aim was to assess not just one, but 
all four defined subcomponents of spatial ability, while 
also taking into account the  important role of conceptual 
and procedural understanding in mathematics education. 
The  test therefore not only assesses spatial ability, but 
also evaluates students’ understanding of mathematical 
concepts and their ability to apply procedural knowledge. 
A  number of research studies have shown a  link 
between performance on tests of spatial imagination and 
mathematical achievement (Cheng and Mix, 2014; Harris, 
2021; Resnick et al., 2020; Sorby and Panther, 2020).
Effective evaluation requires assessing students’ spatial 
abilities as well as their understanding of concepts and 
procedures. Conceptual and procedural knowledge are 
considered two key cognitive principles in mathematics. 
The first is usually defined as ‘comprehension of mathematical 
concepts, operations, and relations’ (Kilpatrick et al., 2001: 5), 
or simply as ‘knowledge of concepts’, because ‘more recent 
thinking views the  richness of connections as a  feature of 
conceptual knowledge that increases with expertise’ (Rittle-
Johnson and Schneider, 2015: 1119). Procedural knowledge 
is understood as ‘the ability to execute action sequences 
(i.e., procedures) to solve problems’ (Rittle-Johnson and 
Schneider, 2015: 1120).
Conceptual and procedural knowledge are closely related. 
While many concepts in the  field of arithmetic arise from 
mathematical processes (Dienes, 1967), in geometry, 
the  child first perceives the  concept and procedural 
knowledge follows (Hejný, 2000). Researchers generally 
agree that the  development of conceptual knowledge 
improves procedural knowledge rather than vice versa (Hecht 
and Vagi, 2010; Rittle-Johnson and Schneider, 2015; Rittle-
Johnson et al., 2015; Rittle-Johnson et al., 2001; Star, 2005). 
Furthermore, according to Son (2006), pre-service teachers 
have limited conceptual knowledge in the field of geometry 
and tend to rely on procedural knowledge.
Many studies have found an  association between spatial 
ability and mathematical ability (e.g., Sorby and Panther, 
2020; Young et al., 2018). On the  other hand, Xie et al. 
(2020) point out that an  increasing number of research 
studies demonstrates that associations between spatial and 
mathematical ability may not be consistent across all spatial 
and mathematical components. They analysed studies 
published in 2008–2018, investigating the  relationship 
between spatial and mathematical abilities. They did not prove 
a  causal relationship between these abilities, but suggested 
that logical reasoning was more strongly associated with 
spatial ability than numerical and arithmetical ability. 

It is generally known that 3D geometry problems tend to be 
more difficult for students than 2D geometry problems. This 
is confirmed, for example, by a  study conducted by Ismail 
and Rahman (2017). This study found significant differences 
in the examination of 2D and 3D formations at the level of 
analysis and informal deductive reasoning among students 
who used GeoGebra. These students were more successful 
with 2D shapes.
The difficulty of 2D and 3D tasks for students may not only 
depend on the level of their spatial ability but may also be 
related to the formulation of the tasks or their representation. 
For example, solving a  problem in a  3D computer 
environment can be easier than in a  2D environment, as 
the student can visualise the spatial situation from different 
points of view.

Research Aims and Questions
While both spatial ability (including its subcomponents) 
and conceptual knowledge have been extensively studied in 
mathematics education, they are usually analysed separately. 
Our study introduces a novel perspective by combining these 
two dimensions in the analysis of specific geometric task types: 
we identify which subcomponent of spatial ability is required 
for particular task types, we examine how deficiencies in 
conceptual knowledge influence students’ success or failure, 
and we apply this approach in the university setting of pre-
service mathematics teacher education. This approach offers 
valuable new insights into students’ difficulties in geometry. 
The findings can help improve university geometry courses 
by showing which topics students struggle with and need 
more support in.
Within this context, our research aims to assess Czech students’ 
proficiency in solving diverse geometric problems. To this end, 
both planar and spatial tasks were included to examine students’ 
performance across these domains. While it is generally known 
that students perform better in planar geometry than in spatial 
geometry, our study goes beyond this general comparison by 
analysing students’ success in specific task types targeting 
different subcomponents of spatial ability and by examining 
how deficiencies in conceptual knowledge contribute to errors. 
This detailed analysis enables the determination of what tasks 
are more difficult. Based on the  students’ results, courses 
on geometry, which students attend during their university 
studies, can be modified. Specifically, the  study targets pre-
service mathematics teachers at the  Faculty of Mathematics 
and Physics, Charles University.
In line with the above, the following research questions were 
formulated:

•	 RQ1: What is the  students’ success rate in individual 
geometric tasks (also with consideration for differences 
between men and women)?

•	 RQ2: In which type of geometric tasks targeting various 
subcomponents of spatial ability do students perform 
best/worst?

•	 RQ3: Are students more successful in the planar or in 
the spatial geometric tasks?

•	 RQ4: How do deficiencies in conceptual knowledge 
contribute to students’ errors in understanding tasks?
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The paper is organised as follows. The Materials and Methods 
section outlines the  test used to assess spatial ability among 
students, including a  detailed explanation of the  research 
methodology. This is followed by the Results section, which 
presents task success rates, compares male and female 
performance, examines the  different subcomponents of 
spatial ability, and contrasts planar versus spatial tasks. 
Furthermore, the  impact of conceptual knowledge on 
performance in geometric tasks is examined. The Discussion 
section then contextualises the findings within the framework 
of international studies and addresses each research question 
individually. The  paper concludes with a  concise summary, 
suggestions and ideas for future work.

MATERIALS AND METHODS
Research Context and Participants
Throughout the period of the research, the primary focus was 
on testing the  spatial abilities of pre-service mathematics 
teachers at the beginning and end of their university studies. 
In this paper, only the  results from first-year students are 
presented, as these participants have not finished their studies 
yet. The  aim is to analyse students’ success in geometric 
tasks designed to evaluate specific subcomponents of spatial 
ability alongside their conceptual understanding. A  key 
component of the  assessment also involves an  evaluation of 
students’ conceptual knowledge in order to provide a  more 
comprehensive understanding of their proficiency in geometry.

Year Number of students 
(women/men) Test format Time limit (standard/extended) Number 

of tasks
2020 (pilot) 36 (25/11) online 30/40 22

2021 36 (17/19) in-person 30 26
2022 25 (10/15) in-person 30 26
2023 25 (11/14) in-person 30 26

Table 1: General characteristics of the testing, 2020–2023 (source: own data)

The students who participated in the  test were pre-service 
mathematics teachers in the first year of their university studies, 
i.e. newcomers to the  faculty (Faculty of Mathematics and 
Physics, Charles University, Czech Republic). The testing was 
repeated four times: in the years 2020 (pilot study, Surynková 
et al., 2021), 2021, 2022 and 2023, always with different 
groups of students. The general characteristics of the  testing 
are summarised in Table 1.

Test Design and Development
The geometric problems in the test are designed so that a specific 
spatial ability is tested by solving them. Each task also assesses 
certain conceptual knowledge in geometry. In the first year of 
testing (i.e. 2020), the test consisted of 22 individual geometric 
tasks. After analysing this initial test, which served as a pilot 
version, the authors revised it to better balance the complexity 
of the  tasks, aiming to enhance the  graphical clarity and 
comprehensibility of the  task descriptions. An  additional 
task focused on planar geometry was also added to further 
diversify the range of problems. Compared to the pilot version, 
four tasks were added and four were modified. As a result, in 
the subsequent years (2021, 2022 and 2023), the test consisted 
of 26 individual geometric tasks. The  tasks are numbered 
from 1 to 14, with some divided into related subtasks, making 
a total of 26 tasks. When describing the tasks, the notation Task 
12.1, for example, refers directly to a specific subtask, while 
the  notation Task 12, for example, indicates that the  results 
pertain to all its subtasks.

Task Categorisation
A  brief description of the  tasks from the  final version of 
the  test from years 2021, 2022 and 2023 is presented in 
Table 2, where, among other data, the individual task success 
rate across the  years is provided (column M). The  tasks are 
primarily divided into two groups – 2D (two-dimensional 

tasks) and 3D (three-dimensional tasks). The test includes four 
types of tasks focused on subcomponents of spatial ability: 
visualisation (V), spatial relation (SR), mental rotation (MR) 
and spatial orientation (SO). The  categorisation of the  tasks 
into these types was thoroughly discussed within the  team, 
drawing upon professional literature and the  team members’ 
experience. It is important to note that some tasks may fall into 
multiple categories or may not be typical for a given category 
(denoted by a  dot in brackets); their inclusion is based on 
professional judgement (the authors of the test have dedicated 
themselves to teaching geometry and training spatial skills for 
many years) and the specific objectives of the test. All the tasks 
test properties of elementary objects in a plane and in a space 
such as a straight line, circle, solid figure, etc. Other specific 
conceptual knowledge areas are listed in Table 2.

Procedure
The test begins with preliminary questions about the participant, 
including the  student’s name, age and study specialisation. 
These data indicate the  fundamental characteristics of 
the students who complete the test. The test is not anonymous 
because the  research is planned as long-term research, i.e. 
The same group of students will be tested in the future again. 
All students were informed about the objectives and long-term 
nature of the testing.
The standard time limit for the  test was 30 minutes; 
the  extended time limit for students with special needs was 
40 minutes. The  students solved the  test individually during 
regular courses.
The students were also asked for their opinion on the difficulty 
of the  test and the  strategy they used to solve the  individual 
tasks. The  students wrote these comments voluntarily. 
A  comprehensive analysis of these comments was not 
undertaken. Instead, we only examine comments relating to 
specific tasks, which are discussed in the Discussion section.
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Data Analysis
The acquired data were processed both quantitatively and 
qualitatively. The absolute and relative frequencies of students’ 
answers were determined, with certain dependencies observed. 
We compared the results of students in individual tasks, across 
the  subcomponents of spatial ability, and also examined 
the  performance differences between men and women. 
Furthermore, we analysed the  outcomes of tasks related to 

planar versus spatial geometry and investigated the  impact 
of conceptual knowledge on the  results. The  statistical 
significance of dependencies between the  obtained data was 
examined by applying Pearson’s χ2 test (which could only be 
used for some subtasks) and Fisher’s exact test (always used 
due to the conditions not being met for the χ2 test). To evaluate 
student comments, we employed qualitative methods and 
categorised the comments into groups for further analysis.

No. M V SR MR SO Tested conceptual knowledge Task characteristics

2D

5.1 91.86 •1 - angle of rotation
- sign of an angle
- rotation around a point
- identification of the size of an angle in the square grid

rotating objects around 
a point in a plane

5.2 86.05 •1

5.3 77.91 •1

5.4 84.88 •1

8.1 96.51 • - properties of a circle
- number of common points (intersections) of two circles
- external and internal tangency of two circles
- relationship between radii and circle centre distances

the relative positions 
between two circles in 
a plane (solved without 
pictures)

8.2 95.35 •

8.3 63.95 •

9.1 69.77 • - properties of a circle
- number of common points (intersections) of two circles
- external and internal tangency of two circles
- relationship between radii and circle centre distances
- the notation and the meaning of conjunction

the relative positions 
between two circles in 
a plane (solved without 
pictures)

9.2 70.93 •

9.3 84.88 •

12.1 97.67 •
- rotation around a point
- direct and indirect congruence

rotating objects around 
a point in a plane

12.2 98.84 •
12.3 100.00 •
12.4 100.00 •

3D

1 84.88 (•) •

- determination of a plane
- intersection of two planes
- intersection of a line and a plane
- determination of the sides of a cut (two points, parallel lines)

cross-section of solids

2 90.70 (•) •

- determination of a plane
- intersection of two planes
- intersection of a line and a plane
- determination of the sides of a cut (two points, parallel lines)

cross-section of solids

3.1 52.33 • - determination of a plane
- distinguishing of positional and metric properties
- parallel lines
- skew lines
- intersecting lines

the relative positions 
between two lines in 
the space

3.2 70.93 •

3.3 60.47 •

4 80.23 • - rotation around a cube edge
- skew lines

finding rotated object 
among others in the space

6 98.84 • - measurement of planar objects assembling cut objects into 
parts in the space

7 95.35 • - measurement of planar objects assembling cut objects into 
parts in the space

10 91.86 • - top, front and side view of an object
- visibility of solid figure edges

identifying the object from 
top, front and side view

11 79.07 • - top, front and side view of an object
- visibility of solid figure edges

identifying the object from 
top, front and side view

13 89.54 •
- rotation around an axis
- top view of an object
- Cartesian coordinate system

rotating objects around 
axis in the space and its 
projection into a plane

14 70.93 •

- rotation around an axis
- top view of an object
- Cartesian coordinate system
- composition of transformations

rotating objects around 
axis in the space and its 
projection into a plane

1Atypical mental rotation task because the students were asked to determine the size of an angle and its sign.
Table 2: Categorisation of geometric tasks with brief description, 2021–2023 (source: own data)
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RESULTS
Success Rate of Individual Tasks
Initially, the individual task success rate was analysed. Subtask 
3.1 was performed the worst, with an average success rate of 
52.33% across all tested years (2021–2023). Students also 
performed poorly on Subtask 3.3, which had an average success 
rate of 60.47% across all years. Other notable tasks include 8.3, 
with a 63.95% success rate, and 9.1, with a 69.77% success rate.
Subtasks 12.1, 12.2, 12.3 and 12.4 were solved by students 
almost flawlessly (respectively, 97.67%, 98.84%, 100.00%, 
100.00%). Tasks 6 and 7 were also performed well, with 
success rates of 98.84% and 95.35%, respectively. Subtasks 
8.1 and 8.2 were also solved relatively well across all years, 
with success rates of 96.51% and 95.35%, respectively. 
Interestingly, Subtask 8.3 had a  significantly lower score of 
63.95% despite being of the same type.
An analysis was also undertaken of the  tasks performed 
consistently over the years, i.e. those tasks students performed 
either consistently successfully or consistently unsuccessfully 
over the years. This was determined by identifying the smallest 
standard deviations from the average success rate of a task over 

the years. Consistently successful subtasks were 12.3 (σ = 0%), 
12.4 (0%), 12.2 (1.33%), 12.1 (1.68%) and 9.3 (2.07%). For 
the  least successful tasks, the  low scores were not consistent 
across all years. This means that a task in which students made 
errors in one year was solved successfully in other years. For 
example, Subtask 3.3 had a success rate of 48.00% in 2022, 
but improved to 68.00% in 2023. Likewise, Subtask 9.2 had 
a success rate of 58.33% in 2021, whereas in 2022 and 2023, 
it was 80.00%.

Men and Women
For all tested years, the average score of the men was slightly 
better than that of the  women, as shown in Table 3. The  χ2 
test and Fisher’s exact test (which was used as a  control) 
confirmed that, with few exceptions, these differences were 
not statistically significant (at the  5% level of significance). 
In the  analysis of the  success rates of men and women in 
individual tasks, statistically significant differences in favour 
of men were found only in Subtasks 8.3 (p = 0.0236) and 9.1 
(p = 0.0373) across all years (both tasks are among those with 
the lowest scores).

Men  Women  Overall 
2021  81.58  77.60  79.70 
2022  87.44  85.38  86.61 
2023  88.46  86.36  87.54 

2021–2023  85.33  82.18  83.94 

Table 3: Average scores of all participants by gender and year (relative frequencies expressed as percentages), 2021–2023 (source: own data)

SUBCOMPONENTS OF SPATIAL ABILITY

Some tasks fall into multiple categories (see Table 2). These 
tasks were statistically included in all considered categories. 
The  least successful was the  subcomponent of spatial 

representation visualisation, where the  average success rate 
was 70.93%. Across the years, this did not vary significantly. 
Other categories were comparable, with spatial relation at 
85.12%, spatial orientation at 87.79%, and mental rotation at 
88.90%. A summary is presented in Table 4.

Year  V  SR  MR  SO 
2021  68.33  79.72  84.85  81.94 
2022  72.80  88.80  90.91  90.00 
2023  72.80  89.20  92.73  94.00 

2021–2023 70.93  85.12  88.90  87.79 

Table 4: Success rate of tasks by year according to the subcomponents of spatial ability (relative frequencies expressed as percentage), 
2021–2023 (source: own data)

Planar and Spatial Tasks
The success rate of planar versus spatial tasks across 
the years was also examined. A consistently higher success 

rate in planar tasks was observed compared to spatial tasks in 
each of the years 2021, 2022 and 2023, and on average across 
the years (see Table 5).

Planar tasks Spatial tasks
2021 81.94 77.08
2022 90.57 82.00
2023 90.86 83.67

2021–2023 87.04 80.43

Table 5: Success rate of planar and spatial task by year (relative frequencies expressed as percentage), 2021–2023 (source: own data)
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Fourteen of the 26 tasks in the test focused on exploring spatial 
ability in a plane. These were Subtasks 5.1–5.4, 8.1–8.3, 9.1–9.3 
and 12.1–12.4 (see Table 2).
The higher success rate of students in the planar tasks is also 
evidenced by the  fact that Task 12 on the  rotation of letters 
and symbols in a  plane was the  most successful overall, 
as the  average success rate in its four subtasks was 99.15% 
(the arithmetic mean of the success rate of four subtasks). In 
the other plane tasks, the average success rate over the  three 
years of the research was as follows – 85.17% (Task 5), 85.27% 
(Task 8) and 75.19% (Task 9).

Influence of Conceptual Knowledge
It is assumed that the  failure of students is also related to 
deficiencies in conceptual knowledge. The test included tasks 
specifically designed to assess students’ understanding of key 
geometric concepts, not only their spatial ability. To check 
whether respondents were consistent in their answers, we 
identified subtasks that test the  same conceptual knowledge 
and verified them using the χ2 test and Fisher’s exact test (at 
the 5% level of significance). This process was applied to Tasks 
5, 8 and 9. It was found that, for example, associations between 
correct answers in Subtasks 8.3 and 9.2 were statistically 
significant (p = 0.0058). A  somewhat lesser dependency 
was also confirmed for Subtasks 8.2 and 9.1 (p = 0.0805). 
The  deficiencies in conceptual knowledge are addressed in 
more detail in the  Discussion section, where, in addition to 
the mentioned tasks, Task 3 is also discussed.

DISCUSSION
It can be generally observed that performance was significantly 
weaker in 2021 compared to the other two years, which were 
relatively comparable. This raises the  question of whether 
the impact of the COVID-19 pandemic might have contributed 
to these differences (Betthäuser et al., 2023; Moliner and Alegre, 
2022). The shift from traditional classroom settings to remote 
learning during the  pandemic could have affected students’ 
cognitive abilities. However, the  influence of COVID-19 on 
educational outcomes is not further investigated in this paper.

RQ1: What is the  students’ success rate in 
individual geometric tasks?
In our research, the  success rate for individual tasks for all 
students ranged from 52% to 100%. The problem tasks caused 
difficulties for more or less all monitored years, but sometimes 
there were more significant differences between years.
In the most successful task (Task 12), students were required to 
identify from eight options the image that is not directly congruent 
with the given one (see Figure 1 in which Subtask 12.2 is depicted). 
Other tasks that were performed well were Tasks 6 and 7.
Subtasks 8.1 and 8.2 were also among the planar ones that were 
successfully performed. However, Subtask 8.3, which is similar, 
was performed one of the worst. More information about Subtasks 
8.1, 8.2 and 8.3 is provided under the discussion relating to RQ4. 
The task that was performed worst of all was Subtask 3.1, which 
involved determining the  relative positions of straight lines in 
a 3D space (see also discussion relating to RQ4).

Figure 1: Task 12.2 – Identification of the drawing which is not directly congruent with the given one on the left, 2021 (source: own drawing)

The average score of men on the  test was better than 
the average score of women across the three years of testing. 
With exception to Subtasks 8.3 and 9.1, these differences 
were not statistically significant. This result is consistent with 
other research (Kambilombilo and Sakala, 2015; Halat, 2008), 
which demonstrated no statistically significant difference 
between male and female pre-service mathematics teachers 
with reference to geometric thinking levels. Likewise, no 
statistically significant differences between males and females 
in solving geometrical tasks was observed in our research, with 
only a slight difference in favour of males for several tasks in 
the earlier research (Moravcová et al., 2021).

RQ2: In which type of geometric tasks targeting 
various subcomponents of spatial ability do 
students perform best/worst?
In our research, we tested the students’ performance in geometric 
tasks targeting various subcomponents of spatial ability. 
The greatest challenge was found to be posed by tasks involving 

spatial visualisation, with an average success rate of only 70.93% 
over the three years. In contrast, tasks requiring mental rotation 
showed the  highest success rates, at 88.9% (on average over 
the three years).
Tasks involving spatial visualisation required, for example, 
identifying the spatial object that matched the given top, front 
and side views in a  three-dimensional coordinate system. 
The  correct object had to be selected from four provided 
options (see Figure 2).
Comparing our findings with international literature reveals both 
similarities and differences. International research in this field 
often points out that spatial visualisation is a complex aspect of 
spatial ability (Lohman, 1979), which aligns with our observation 
that spatial visualisation is the  most challenging for students. 
Lohman (1979)  defined spatial visualisation tasks as complex 
mental transformations that are considered more difficult than 
other spatial tasks, which often involve simpler transformations 
like rotations. Spatial visualisation tasks often involve not only 
rotating but also manipulating objects in ways that go beyond 
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simple rotation. We also observed that the  success rates were 
higher in tasks that required less cognitive load for manipulation, 
as discussed by Sorby (1999).
For example, Uttal et al. (2013), in their meta-analysis, discuss 
the variable difficulty levels of spatial tasks among students and 
highlight the effectiveness of targeted training to improve specific 
spatial abilities. Another pivotal study by Sorby and Baartmans 
(2000) demonstrated the long-term benefits of spatial training for 
engineering students. The lower success rates of our students in 
visualisation tasks suggests a need for similar interventions.
In tasks involving mental rotation, important characteristics 
that could affect performance include the  angle and axis of 
rotation. International literature suggests that mental rotation 
abilities can be assessed comparably, whether using simple 
cardinal-axis rotations or more complex skewed-axis rotations 
(Nolte et al., 2022). While our students performed well in 
mental rotation tasks, international studies do not suggest that 
mental rotation tasks are generally easier than other spatial 
tasks. Usually, mental rotation tasks are tested separately due 
to their distinct cognitive demands.

RQ3: Are students more successful in the planar 
or in the spatial geometric tasks?
In our research, pre-service mathematics teachers were more 
successful in solving 2D problems than 3D problems. Also 

contributing to the higher success rate of 2D problem solving 
is the fact that the highest scoring tasks across all three years 
of testing were the four planar tasks 12.1–12.4 (see Results 
section). However, it should be noted that some subtasks of 
2D Tasks 5, 8 and 9 were performed worse. More on this is 
provided under the discussion relating to RQ4.
These results can be related to the fact that the Czech national 
mathematics curriculum for lower and upper secondary 
schools (MEYS, 2005; 2007) focuses more on students’ 
outcomes in a  plane than in a  3D space. This fact is also 
confirmed by our task analysis of state entrance tests to 
secondary schools and of the  graduation tests for the  last 
four years; the ratio between the number of planar and spatial 
tasks is approximately 3:1.
The better results of pre-service teachers in 2D tasks correspond 
to international research results with other respondent groups 
(Ismail and Rahman, 2017). Also, Bruce and Hawes (2015), 
in their research related to a  problem-solving intervention 
on 2D and 3D mental rotation by children (aged 4–8 years), 
found that all age groups demonstrated significant gains in 
their 2D mental rotation performance; the effects were higher 
and more consistent than those observed on the 3D tasks.
Figure 3 is an example of one of the 3D tasks, even though 
3D tasks delivered lower success rates compared to 2D tasks 
(see Figure 1).

Figure 2: Task 11 – Identification of the object from top, front and side views, 2021 (source: own drawing)
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RQ4: How do deficiencies in conceptual 
knowledge contribute to students’ errors in 
understanding tasks?
For Tasks 3, 5, 8 and 9, of which some of the subtasks were 
performed the  least successfully, a  more detailed analysis 
was undertaken of the  possible causes of student errors due 
to insufficient conceptual knowledge. Our research confirmed 
that deficiencies in conceptual knowledge negatively affect 
student achievement.

In Subtasks 3.1 and 3.3 (see Figure 4), students 
determined the  relative position of two straight lines in/
on a cube based on a picture. Among the wrong answers, 
the  following shortcomings often appeared in both tasks: 
instead of identifying the  mutual positions of the  given 
straight lines (parallel, intersecting, skew), the  students 
used the  formulation ‘the straight lines intersect/do not 
intersect’. The  most frequent error in Subtask 3.1 with 
two intersecting straight lines was the confusion between 

Figure 3: Task 13 – Identification of the projection of the object onto the xy-plane after rotating the object 270 degrees according to 
the indicated direction, 2021 (source: own drawing)
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the metric relationship between the lines with a positional 
relationship: instead of intersecting lines, the  students 
wrote about perpendicular straight lines. Other errors were 
mainly related to a  lack of knowledge of the  concept of 
skew and parallel straight lines, where, in both positions, 
the  straight lines have an  empty intersection, and it is 
necessary to distinguish whether the straight lines lie (for 
parallel ones) or do not lie (for skew ones) in the same plane. 
This was also indirectly confirmed by some respondents 
who stated in the  notes to these tasks that they did not 
remember the  necessary terms. Other studies have also 
identified that students have misconceptions about parallel 
straight lines (Biber et al., 2013; Youkap, 2021; Ulusoy, 
2023) and perpendicular lines or segments (Duatepe-
Paksu and Bayram, 2019; Ulusoy, 2023). This complies 
with Barut and Retnawati (2020), who have pointed to 
the problem of students’ understanding of the  concept of 
skew lines.
In each of the four subtasks of Task 5, the segment AB and 
its image A’B’ under rotation around the  given centre S 
by a  certain oriented angle (the positions of S and AB are 
identical in all subtasks) were given. The  situation was 
represented on a square grid. The task was closed. Students 
had to choose the  appropriate size of the  oriented angle 
from the  offered options +90°, –90°, +60°, –60°, +45°, 
–45°. The correct answers were +90°, –90°, –60° and +45° 
in that order. We followed both the correct idea of the size 
of the  angle of rotation, and the  conceptual knowledge 
of rotation as such, especially the  concept of the  sense of 
rotation (plus/minus distinction).  Students were the  least 
successful in Subtasks 5.3 and 5.4. In the  comments they 
mentioned a hesitation between 45° and 60°. However, they 
had greater difficulty with the plus/minus distinction, even 
though there was a hint in the assignment: ‘plus corresponds 
to the sense of clockwise rotation’. If the absolute value was 
accepted as the correct answer (without the +/− distinction), 
only one answer would have been wrong in Subtasks 5.1 and 
5.2, and the success rate would have increased noticeably in 
Subtasks 5.3 and 5.4 as well. Other researchers also draw 
attention to students’ difficulties in determining the  sense 
of rotation, for example (Clements et al., 1996; Clements 

and Burns, 2000). We consider the concept of the sense of 
rotation to be important for everyday life (e.g., opening 
a bottle, screwing, etc.).
Tasks with a  low success rate also included Subtasks 
8.3 and 9.1. In Tasks 8 and 9, students had to determine, 
without drawing pictures, the  number of common points 
of two circles. Realising the relative position of the circles 
(Feng et al., 2014) was key to solving the  tasks. Although 
this topic is not explicitly stated in the national curriculum 
(MEYS, 2005), it is included as a standard in the teaching 
of mathematics in lower secondary schools. The problem is 
usually visualised for students, and they solve the  related 
problems using sketches. At the  same time, they are led 
to derive the  relationship between s (the distance between 
the  centres of the  given circles), r1 and r2 (the radii of 
the circles) for individual relative positions. In Task 8, the radii 
r1, r2 of both circles were given, and in the individual subtasks 
only the distance s was changed. In Task 9, only the radius of 
one circle was fixed, and the radius of the other and s varied. 
Many respondents found Tasks 8 and 9 difficult (as evidenced 
by their comments), especially because they were not allowed 
to use a  picture, which is not usual in school teaching or in 
mathematics textbook tasks. Kambilombilo and Sakala (2015) 
also pointed out the  difficulties with tasks beyond those 
common in textbooks.
Without a  full understanding of a  mathematical concept, 
the subsequent concept cannot be well understood (Aktaş and 
Ünlü, 2017; Hacisalihoğlu Karadeniz et al., 2017). Students need 
to have developed concepts such as a circle, intersection, point 
of tangency, etc. to understand the  relative positions between 
two circles. For example, Hromadová et al. (2020) describe 
a misconception: ‘the centre of a circle belongs to the circle’. 
This misconception can negatively affect the understanding of 
the relationship between two circles and the determination of 
the number of points they share in common. Some students in 
our test also stated that two circles have (exactly) three points 
in common.
Students with insufficient conceptual understanding rely on 
procedural understanding (Son, 2006). Tasks 8 and 9 would not 
be difficult without the prohibition of using an image. The low 
success rate points to difficulties in remembering and correctly 

Figure 4: Subtask 3.1 and 3.3 – Identification of the relative position (i.e. parallel, intersecting, or skew) of two straight lines drawn in 
an auxiliary cube, 2021 (source: own drawing)
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visualising and comparing more data (three distances). In 
Subtasks 8.3 and 9.2, the circles shared one point in common 
(they touched internally). Through statistical analysis, it was 
found that the  students’ answers to these two subtasks are 
statistically dependent, i.e. that the students either solved both 
tasks or made mistakes in both. Subtasks 8.3 and 9.1 were 
among the  tasks that were performed the  least successfully, 
which is in line with our experience that the  idea of circles 
touching internally and the  related connections are the  most 
difficult for students. The  low success rate for Subtask 9.1, 
where the  circles intersected at two points, was apparently 
caused by the  use of symbolic notation in the  assignment. 
This reason was also repeatedly mentioned by students in 
the  comments. Selden and Selden (1995) pointed out that 
college students (including high school mathematics teachers) 
failed to consistently interpret informally written mathematical 
statements into equivalent formal statements. Similarly, Mutodi 
and Mosimege (2021: 1195) found that ‘Misconceptions and 
poor conceptions in the interpretation of mathematical symbols 
result in students failing to link mathematical symbols and 
formulae with appropriate concepts’.
The above points to the  fact that students’ results in spatial 
ability may be related to students’ conceptual knowledge. Other 
researchers also draw attention to this relationship in mathematics 
(e.g., Lowrie et al., 2019; Rittle-Johnson et al., 2019; ) and also 
in other subjects, such as chemistry (Black, 2005).
Our findings show that conceptual misunderstandings 
contribute to students’ errors in the performance of geometric 
tasks; however, we acknowledge that this is not the  only 
possible explanation. In the  case of 3D tasks, the  lower 
success rates may also be due to the  fact that less time is 
devoted to spatial geometry in the  Czech mathematics 
curriculum. We cannot determine which factor contributes 
more to students’ errors.

Limitations and Implications of the Study
Among the  main limitations of our study is that it was 
conducted at a  single institution and involved a  relatively 
small sample of students, which may limit the generalisation 
of the  results. Although the  test was carefully designed 
to assess specific subcomponents of spatial ability, 
the classification of tasks into categories is partially based 
on expert judgement. Furthermore, some tasks may fall 
into multiple categories or may not be typical for a given 
category. We are also aware that the analysis should ideally 
include a  qualitative component such as a  more detailed 
analysis of students’ written comments or additional 
comprehensive interviews. Future research may benefit 
from broader samples and additional qualitative data to 
further validate and expand our findings.
Despite these limitations, we believe that the results of our 
study offer important ideas for the design or modification of 
geometry courses at the university level. First, identifying 
specific subcomponents of spatial ability that present 
difficulties – particularly spatial visualisation – ensures that 
the instruction can include targeted practice with appropriate 
types of geometric problems. Second, examining students’ 
conceptual misunderstandings provides meaningful feedback 

for improving the teaching of core geometry concepts, such 
as the  relationships between lines and planes or between 
circles. Finally, because the  study focuses on pre-service 
teachers, it has the  potential to influence future teaching 
practice. These results can help improve the  structure and 
content of university geometry courses to better prepare 
future mathematics teachers. This study may also serve as 
an  inspiration for other researchers or educators aiming to 
improve spatial reasoning and conceptual understanding in 
geometry education.

CONCLUSION
The research presented in this paper provides insights into 
the spatial abilities of pre-service mathematics teachers in their 
first year of studies at the Faculty of Mathematics and Physics, 
Charles University, highlighting their varying proficiency 
across different geometric tasks.
Over three years of testing, it became evident that tasks 
involving spatial visualisation posed the  most significant 
challenges, with students achieving a  lower success 
rate compared to tasks requiring, for example, mental 
rotation. These findings underline the complexity of spatial 
visualisation tasks, which often require more difficult 
mental transformations than simple rotations. Furthermore, 
the research revealed a consistent trend: students performed 
better in planar geometric tasks compared to spatial ones, 
aligning with the  broader educational focus on planar 
geometry within the  Czech national curriculum. This 
outcome calls for enhanced training on spatial geometry, 
potentially improving educational outcomes in more 
complex 3D spatial reasoning tasks and for better support 
of the  development of spatial abilities in pre-service 
mathematics teachers. The findings also emphasise the pivotal 
role of conceptual knowledge in understanding and solving 
geometric tasks. Throughout the  research, it became clear 
that deficiencies in conceptual understanding significantly 
contributed to students’ difficulties. For example, students 
struggled with tasks that required a  deeper understanding 
of geometric properties and relationships. Improving 
conceptual knowledge can be considered a key strategy for 
enhancing students’ overall performance in geometry. This 
is particularly important throughout the preparation of pre-
service teachers, as they will be responsible for teaching 
these skills to future generations.
The  findings are significant, as this is one of the  first 
studies to use the same set of geometry tasks across three 
years to examine how first-year pre-service mathematics 
teachers perform in geometric problem solving. As for 
future research, the same group of students will be tested 
again at the end of their university studies. This will allow 
us to compare students’ results at the  beginning and end 
of their studies and to analyse whether the  interventions 
provided through the  university geometry course have 
been effective.
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