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ON THE PROBLEM OF GENERATING A LARGE NUMBER OF 
COMPARABLE TEST VARIANTS 

Abstract
The paper presents a possible way of solving the problem of creating more test variants for a large number 
of students divided into groups. The proposed solution may consist in introducing a parameterized 
automatic test generator. The principle of an automatic parameterized test generator is shown. The 
process of the question tree construction according to the increasing numbers of question in the banks 
of the particular subjects leads to a combinatorial explosion. This often results in excessive time of 
generation of the different variants of tests. To solve this problem, a heuristic method based on a pre-
processing stage that precedes the construction of the searching tree is proposed. Further, the results 
of the experiments comparing the time of the test generation and the congruence of the test variants 
generated by the algorithm either using or non-using this heuristics are presented. According to these 
results the use of the generator with the proposed heuristics provides a considerably shorter time of 
generation, and the congruence of the generated test variants is even better in most cases.
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Introduction
One of the most common forms of ascertaining (or measuring) 
the level of the gained knowledge is testing. Apart from the issue 
of the correct and well-balanced composition of the test, which 
we are not going to deal with herein, there is a specific issue of 
the need for designing a number of comparable variants for the 
same purpose of testing. A requirement calling for the creation 
of more variants of a test of the same type is quite common in 
this respect. This may be the case of testing the knowledge of 
a large number of students divided into groups. The same need 
arises when both the tests and the corrective tests are prepared 
simultaneously, or when the tests are repeated with a time 
delay. Another case is testing the knowledge in an e-learning 
environment where every student handles the test in a different 
time and it is therefore necessary to create a variant of the test 
for each student individually (Rosman and Buřita, 2014).
The problem of compilation of such a test set consists mainly in 
meeting the following requirements:

• All variants of the test should contain the same number 
of questions, as well as the same intensity expressed in 
points for each thematic field of the test;

• The similarity of the individual variants of the test should 
be minimal (a minimal congruence requirement).

Probably the biggest problem, when processing the necessary 
amount of the test variants manually (i.e. collection of tasks 
from each guarantee of an individual thematic field, the 
assembly of question groups for each individual variant of 
the test, etc.), consists in receiving the materials in different 
formats, in unbalanced difficulty of manually compiled variants 
of the test, and, apart from that, a time-consuming detection and 
correction of errors arising from editing the final form of the 
test. The use of MS Word templates for creating questions by 

the guarantees of thematic fields is seen as underperforming. 
Automatic generation of the test variants seems to be a possible 
solution to this problem.
Generating the necessary amount of variants of the given test 
may be facilitated by applying the computing technology. 
However, in connection with the above, it is necessary to solve 
a few problems. From the point of view of the generated tests 
mainly the following must be considered:

• guarantee of a comparable structure; and
• comparable level of difficulty.

The key issue of comparability of tests in terms of difficulty 
has been addressed in other publications. Authors Klůfa and 
Kaspříková (2012) use probability approach to solve the problem 
by binomial distribution and to answer the questions concerning 
the number of correct answers or the probability that the number 
of correct answers exceeds a given number. Similarly, Klůfa 
(2016) analyses the point number differences in the mathematics 
test among several variants of entrance examination test 
according to difficulty of variants. He studies how the results of 
entrance examinations depend on test variants.
For mentioned purpose the computing technology has been 
using for a long time. In the era of the Internet and the on-
line technologies another significant advantage of using the 
computing technology for the purpose of testing appeared, 
namely the remote knowledge verification using on-line 
connection (Hürst, Jung and Welte, 2007; Niazi and Mahmoud, 
2000).
The objective of this article is to present a proposal of the 
system for the automatic test generation according to the 
set requirements related to the structure (score, number of 
questions, issues tested) and the requirements concerning the 
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mutual relations of the tests, i.e. the disparity of their contents. 
The algorithm of the test construction is described and a method 
for a solution of the problem of the combinatorial explosion 
during the question tree construction is proposed. The proposal 
of the above generator is based on a few input requirements for 
the basic characteristics and the generator functionality. These 
requirements are described in detail by (Gangur, 2014). The 
most important requirements are:

•	 the need for the existence of a simple control mechanism 
when setting parameters and generating tests;

•	 the possibility of the text contents structure 
parameterization, i.e. the possibility of determining 
the total score in the test and the number of questions 
stemming from the individual thematic fields;

•	 the possibility to ensure the minimal congruence of 
the test contents with regard to the random choice of 
questions from the question bank.

The above requirements were the starting points in the process 
of searching for such a system or, as the case may be, in applying 
the principles of the already designed and published systems.
In the next section of this paper the related work is presented, 
the functionality of the generator is briefly introduced, and 
the following parts describe the methods and algorithm of 
the generator implementation as depth/first tree searching 
with a backtracking mechanism. Then, our new proposal of 
a heuristic method for the solution of the combinatorial explosion 
is introduced. This explosion results from the question tree 
construction with respect to the number of questions. The use of 
the aforementioned generator remains only in theory without an 
application of the designed heuristics, due to the time-consuming 
calculation. Using this heuristics a gap between the theoretical 
and practical utilization of the generator is overcome, enabling 
the real use of the generator in practice. Finally the outcomes 
of experiments of the test generating process are presented 
while the results of the processes either using or non-using this 
heuristics are compared.
Materials and Methods
Related work
The issue of the automated test generating has been dealt with 
in a number of publications; see e.g. Brusilovsky and Pathak 
(2002), Sung, Lin and Chen (2007) or Zeng et al. (2013).
The similar difficulty of each variant is considered as a key 
issue of test variants design. Contributions dealing with this 
problem use various approaches to solve it. For example Klůfa 
and Kaspříková (2012) reflect the results of statistical analysis 
using probability for evaluation of appropriateness of test 
variants. Foltýnek (2009) applied another approach that enables 
to compare test variants results according to different difficulty 
level using scoring process and correctness coefficients.
Automated creation of adaptive tests with regard to the level of 
knowledge of the individual students is an independent field in 
which intensive research is being carried out (Mine, Shoudai and 
Suganuma, 2000; Kapusta, Munk and Turčáni, 2010). Fakhrusy 
and Widyani (2017) developed Moodle plugins to generate 
quiz as a part of LMS using genetic algorithm. Nuthong and 
Witosurapot (2017) focused on diverse difficulty of quizzes 
and proposed the 5-level difficulty ranking score using a hybrid 
similarity measurement approach to increase the number of 
usable generated quizzes and their sensible generation.
Seemingly simple issues of the automated test generation 
controlled by parameterized requirements concerning the test 
structure are not paid so much attention with regard to the 
quantity of publications on this topic. Authors Yang, Wu and 

Wang (2008) proposed and implemented a robust system with 
adaptive elements for administration and a follow up selection of 
the test questions from the database with regard to the previous 
test results is described. The system enables a random choice of 
the test questions with regard to the set parameters, such as the 
percentage of the required type of questions (e.g. multi-choice, 
open questions) or the fields (knowledge points) out of which 
questions are selected. In the key issue of the choice of questions 
the system uses a complicated mechanism of arithmetic 
calculations which ensures meeting the set requirements for 
the test structure. The system is extensive and with regard to 
the process of choosing the questions and feeding the question 
database it may seem difficult for the users.
None of the above systems deals with the problem of insertion 
and namely the typesetting of the mathematical text. The authors 
Tomas and Leal (2013) deal with the issues of the mathematical 
text by means of an external application. So, as to finalize the 
creation of the tests, the above authors use some functionalities 
of a web application for the presentation and evaluation of the 
mathematical expressions.
The above described systems meet the basic requirements for the 
test creation from the randomly chosen questions with regard to 
the set parameters of difficulty and coverage of various fields of 
issues to be studied. These are complex and extensive systems 
covering a number of other functionalities and requiring a time 
consuming creation of a question bank. In most cases, generators 
do not deal with the issue of the mathematical text typesetting 
and they are not quite flexible in the matter of the choice of the 
generated tests output format. The majority of the above stated 
tools as well as other examined instruments only generate online 
web tests.

The functionality of the generator

In this chapter we will discuss the functionality of the proposed 
automatic test generator along with methods and algorithms of 
the implementation of such a generator. Attention will be paid 
to the solution of the combinatorial explosion with focus on the 
mutual congruence of the generated tests.
Let us, first of all, describe the final product of the process of 
generation, which is the necessary amount of variants of the 
required test. The input data here are the source questions in the 
question bank. The following attributes have to be entered for 
each question:

• thematic field – a thematic area related to the given 
question; for each thematic field the required number of 
questions and the overall number of points for this field 
must be entered as the input parameters of the process of 
generation;

• score - number of points awarded if the answer is correct, 
this value should express the difficulty of a question;

• group - it determines whether a question is or is not 
incorporated in the test in context with other questions – 
for more detail see following subchapter).

Resulting test consists of questions generated within the 
individual thematic fields.
The functionality of the generator is controlled by a set of input 
parameters. We used the following parameters as the basic 
input generator parameters which then determine the system 
functionality:

• the total number of questions stemming from the 
individual thematic fields;

• the total score stemming from the individual thematic 
fields;

• the format of the resulting tests;
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• the total number of the generated tests;
• the number of the tests in a package to be used 

simultaneously.
By means of the first two parameters it is possible to select the 
quantity of questions stemming from the given field in the entire 
test and at the same time to select its difficulty by a suitable 
combination of the number of questions and the score for the 
given thematic field. The generator supports the distributed 
creation of the individual fields of questions by various creators 
who can save the final question bank in an online repository of 
questions used by the generator. The administrator then controls 
the final tests generation. This approach enables, in some special 
cases (entrance tests and such like), hiding the contents of the 
complete test from the individual creators and letting only one 
authorized person create the test.
The strength of the generator consists in the possibility of 
selecting a template for generating the required output format. 
The test itself is generated in the proposed universal XML 
format, and by means of the XSLT processor it is, with the 
help of the inserted transformation template, transformed into 
the required output format (Kosek, 2013). The possibility of 
selecting this output format is flexible and it enables the user to 
create his/her own template and to generate his/her own output 
format (LaTeX, AcroTeX, Moodle XML).
The parameters determining the total number of the generated 
tests and the number of the tests in a package to be used 
simultaneously also control, among other things, the format of 
other generator outputs, namely the calculation of the mutual 
percentage congruence of the test variants, and the suggestion 
of the most suitable combinations of the test variants to be 
used simultaneously. The administrator, with the help of these 
suggestions, tries to compile the tests so that there are tests 
with the lowest level of congruence of questions between the 
individual rounds. The test questions are selected randomly 
and some questions, with regard to the required total number of 
questions in comparison with the number in the bank of a given 
field, may be repeated in the tests.
Even the question banks stemming from the individual fields 
can be listed in the generator outputs. The possibility of simple 
creation of such a question bank by means of freely available 
editors is one of the requirements for the generator functionality.
The control information related to the individual questions can 
be seen as another parameter influencing the test compilation. It 
determines, apart from the evaluation of a question by scoring, 
also listing a question in a group of questions. The group of 
questions enables similar questions not to be listed in one test 
and, at the same time, to list more questions with the joint 
settings in one group.
Another functionality of the generator considers congruence 
among test variants. As support for the prevention of undesirable 
cooperation among the examinees the generator considers the 
percentage congruence of tests and proposes combinations of the 
individual test variants to be grouped together. The percentage 
congruence of two variants is defined as a ratio of the number 
of identical questions in the considered variants and the total 
number of questions.
The proposal for the composition of variants in the individual 
rounds, i.e. the test packages, results from the requirement for 
the minimal congruence between the individual rounds. This 
limits the possibility of influencing the test as a result of possible 
communication of the examinees in the time gap between 
rounds when the examinees from one round may pass on as little 
information related to the particular questions as possible to the 
examinees in the following round.

The question structure and information control
The current version of the presented generator uses the Aiken 
question format (Aiken, 2013) and it can be extended by the 
possibility of the questions with a short or numerical answer 
and by the possibility of inserting more correct answers in case 
of the multiple response questions.
Each question is introduced by a tag with an abbreviation of the 
thematic field to which the question belongs (see ‘OV’ in the 
listing below). The tag contains control information influencing 
the listing of questions in the compiled test. Within this 
information the question bank creator determines the evaluation 
of the question by score and the group to which the creator lists 
the question.

<OV score=”2” group=”381”> The 
objective function for achieving the highest 
total possible number of the manufactured 
products in the linear mathematical model 
of an optimization task for the above stated 
settings can have the following from:

A) <math>\max z = \sum\limits_{i=1}^{n} 
w_i</math>

B) <math>\max z = c_j \sum\limits_
{i=1}^{n} w_i</math>

C) <math>\max z = \sum\limits_{i=1}^{n} 
c_{ij} w_{ij}</math>

D) <math>\max z = \sum\limits_{i=1}^{n} 
\sum\limits_{k=1}^ {p} b_{jk} w_j</math>

E) <math>\max z = \sum\limits_{i=1}^{n} 
c_j w_j</math>

ANSWER: A 

The numerical code identifying the group is important. The 
digits of this code control the listing of the question in the stage 
of constructing the test according to the following scheme:

• Group 0 - the question can be listed without limitation;
• Group <1 – 99> - questions with the same number are not 

listed together in one test;
• Group <100 – 999> - group questions; mostly it is more 

questions with joint settings;
o questions with the same first digit and different 

second digit are not listed in the same test;
o questions with the same first and second digit 

belong to the same group and either all of them are 
listed in the test or none of them at all;

o the last digit determines the order of questions in 
the group; the first one is often a question with the 
joint settings.

One of the other features of the generator is the possibility to 
insert the mathematical text into the text of a question or, as the 
case may be, also the exact listing (e.g. algorithm listing and such 
like) as well as a figure in the JPEG format as a complement to 
the task settings (Gangur, 2011; Gladavská and Plevný, 2014).

The algorithm of the test assembling

In case we require the compilation of the test out of the questions 
based on the set criteria and with regard to the question control 
information (group) the algorithm of the recursive depth-first 
search of tree is applied. It is the so called backtracking algorithm 
which selects, out of the questions for the given field, one or 
more questions (according to the group number) and it always 
checks whether the criteria of the total number of questions and 
the required total score are met. If one of these parameters is 
exceeded, it recurs by one question (more questions) and selects 
another one.
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The core of this algorithm is the combination recursive function. 
The input in this function, when it is called for the first time, is 
the list of the question bank suitable for the given field. Random 
permutation and question selection is applied in case of this list 
and therefore the order of questions and the depth-first search 
of tree are always different. The following listing shows the 
headline of the applied function and its first call.

function combination($list, $current_
list, $num_points, $deep)

new_test_list = combination($question_
bank, Array(), 0, 0)

In case of further recursive calls of the function this list is entered 
in the function without the questions that had already been 
used. In this sense, the current list is also an input parameter in 
which selected questions are stored (in case of the first call the 
list is empty). Other parameters are: the score of the questions 
currently inserted into the test and the depth of tree which 
represents the number of questions in the compiled test. Upon 
the first call both the values are null. With each question (group 
of questions) being added the depth of tree gets higher.
Out of the list of free questions the recursive function call creates 
the rest of the list of the tested questions. The recursion ends 
upon achieving the required score and the number of questions 
for the given field. In case of the retrospective finishing of 
the individual calls of the function a list of the test questions 
is formed starting from the back and moving forward and at 
each level this tail of the list is added to the currently selected 
question or the question group and like this a new tail of the list 
is created at the given call level.
If, upon the function call, the values of score or number 
of questions are exceeded, the selected question (group of 
questions) is not accepted and another question in the list of 
free questions is chosen, until the list is empty. After that the 
algorithm recurs back by one level of the call (backtracking), 
and it selects another question out of the list of the free questions 
at the given level.
By means of the above described procedure of backtracking the 
depth-first search of tree is implemented. Upon returning back 
to the first call level the whole list of questions according to the 
set criteria is created if the finishing condition is met.
The process of depth/first searching algorithm according to the 
number of used questions leads to the combinatorial explosion 
and it takes too much time. When increasing the number of the 
source questions for a thematic field as well as the number of 
the demanded questions for this field the time demand of the 
generation process increases significantly. In many cases, this 
time is expressed in the order of tens of minutes (or hours 
sometimes). This can be very annoying for users, and therefore 
it is necessary to solve this problem. A proposal of a possible 
way to solve this problem is described in the next part.

The solution of the problem of combinatorial explosion

One of the possibilities to solve the problem of the combinatorial 
explosion of questions tree is to decrease the whole number 
of questions in one thematic field. This approach narrows the 
selection of different questions and increases the possibility of 
higher congruence among the generated tests.
We, on the other hand, propose the solution that also decreases 
the number of questions put in the process of depth-first tree 
searching, but the algorithm randomly selects these questions 
from the bank of all questions of one thematic field. If the 
assembling of the questions list for the generated test according 
to the input parameters setting is not successful, the process 

continues with the selection of new questions from the rest 
of questions in the bank. When the bank of questions for the 
considered field is emptied all questions are returned to the bank 
and the process starts again with the new selection.
In the preselection we take into account the exclusive questions 
with respect to the group number (1 – 99), and at the same 
time the preselection process controls the whole number of 
the demanded points for the field. This number of points is 
satisfied by the preselection of questions individually for sets 
of different n-points questions. For example 10 points can be 
assembled from four 3-points questions, five 2-points questions, 
and ten 1-point questions. In the same way the question list is 
constructed for every new test variant, and it contributes to the 
low congruence among different test variants.
The step of the random selection is implemented as the selection 
of all the remaining questions in the bank in the permuted order. 
This preselection has to reflect the group questions, i.e. if the 
one question of the group is selected the other ones have to be 
included to the selection. The described process has quadratic 
time complexity according to the number of the preselected 
questions and the number of all the source questions.
The algorithm of the preselection is described in the next steps. 
The input to this preselection process is a permuted list of the 
source questions.

Step 1. Take the input current list of the 
source questions as pl.

Step 2. Create an array of maximal 
numbers of questions for every 
n-point question according to the 
prescription floor (demanded points 
for field / n)+1.

Step 3. While selected number of n-point 
questions is not greater or equal 
to the maximal numbers of questions 
determined in step 2 for every n or 
all questions of list pl are checked  
do
i. Take question from source list 

pl and fill n as a score of 
question.

ii. If (number of n-question is 
less than the maximal number 
of n-questions) and group of 
question < 100 is not in the 
resulting question list rl 
then
a. if the group of question >= 
100 then select all questions 
of the group and add them to 
question;

b. add question or all selected 
question in group to the 
resulting question list rl.

c. remove the selected 
question(s) from the list of 
the source questions pl.

Step 4. Return the resulting list of 
questions rl.

The output from the preselection is the list of questions and it 
is one of the input parameters for the combination function (see 
subchapter The question structure and information control). 
If the assembling of questions for the field is successful the 
selected questions are removed from the permuted list of 
the source questions and for assembling the next variant the 
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preselection process selects questions from the modified list 
of the source questions. If the assembling is not successful the 
list of the source questions is fulfilled with all the questions 
and the preselection is applied on this list. If the assembling is 
not successful on this new preselected list the generator stops 
without result.
The proposed heuristics not only decreases the time consumption 
but also, with respect to selected questions pools (that are 
mostly mutually exclusive), supports lower congruence among 
particular variants of the generated tests. The comparison of 
the results of the generation processes using or not using the 
proposed heuristics is presented in the next part.

Results of experiments
The outputs of the generating process in different output formats 
according to the input parameters are presented by (Gangur, 
2014). The current version of the generator offers XSL templates 
mainly for the formats Moodle XML, LaTeX and AcroTeX 
(interactive PDF). In case of TeX format (LaTeX and AcroTeX) 
it is possible to create PDF documents by means of the post-
processor methods.
Next the computing times and the congruence among generated 
variants are presented. The generator was used for the same 
source of questions with the same input parameters, i.e. the same 
number of the demanded questions for every field and the same 
demanded score for every field. In the first case the generator 
was implemented without the above described heuristics, and 
in the second case with this heuristics. The data in the table 1 
show the numbers of question in the banks of the particular 
subjects (thematic fields) together with the values of the input 
parameters.

Particular subject 
(thematic field)

Bank size (No of 
source questions)

No of demanded 
questions

Demanded score 
of questions

Economics 176 10 20
Business economy 140 11 20
Management 81 5 10
Marketing 106 6 10
Business finance 70 5 10
Accounting 70 5 10
Management science 59 4 10
Statistics 69 5 10
Average 96.375 6.375 12.5

Table 1: Numbers of questions in banks and input parameters 
values, 2017 (source: own calculation)

The output coefficients of comparison are the congruence of 
variants and the speed (time complexity) of the generating 
process. In one experiment 10 or 5 test rounds are processed. 
The outputs of the experiment are the average time per one round 
(AT) for each compared algorithm (without heuristics - NH, and 
with heuristics - H), and the average coefficient of congruence 
among particular variants per one round (AC).
The input parameters for experiments are as follows:

• The number of test rounds.
• The number of the source questions represented as an 

average number of the source question per one thematic 
field (ANSQ). This number is determined by the selection 
of the configured percent part of the basic source files (see 
example of questions number in the table 1). More source 
questions generally imply larger computing time and the 
decrease of the resulting congruence among particular 
variants of test.

• The number of the demanded questions for every 
thematic field is represented by the average number of the 
demanded question per one field (ANDQ). These numbers 

are configured by the absolute number of questions for 
every field. As with the previous parameter ANSQ the 
higher number of the source questions generally imply the 
larger computing time and the decrease of the resulting 
congruence among particular variants of test.

• The number of the demanded variants of the test is 
configured as the absolute number of variants. In the 
experiments this number was set to 6 variants (see later).

Version
Algorithm with heuristics (H) Algorithm without heuristics (NH)

A B C D E F A B C D E F
A - 0.00 0.00 0.00 0.00 0.00 - 5.88 7.84 7.84 1.96 5.88
B 0.00 - 0.00 0.00 0.00 0.00 5.88 - 0.00 3.92 3.92 1.96
C 0.00 0.00 - 0.00 0.00 0.00 7.84 0.00 - 3.92 1.96 9.80
D 0.00 0.00 0.00 - 0.00 0.00 7.84 3.92 3.92 - 7.84 5.88
E 0.00 0.00 0.00 0.00 - 0.00 1.96 3.92 1.96 7.84 - 13.73
F 0.00 0.00 0.00 0.00 0.00 - 5.88 1.96 9.80 5.88 13.73 -

Table 2: Values of mutual congruence using algorithm H and NH 
[%], 2017 (source: own calculation)

The values of both parts of the table 2 are summarized and 
represented by one coefficient of the average congruence. The 
lower value of the congruence means a lower level of mutual 
similarity of variants. In our case the values of this coefficient 
are 0.00% for the generation processes using the proposed 
heuristics (H), resp. 5.49% for the generation processes non-
using the proposed heuristics (NH).
The outputs are the average congruence of one test round of the 
generator and the time of generating the demanded number of 
variants. The searching tree is constructed for every thematic field 
of every variant and that’s why the complexity increases linearly 
according to the increasing number of the demanded variants. 
With respect to the number of the source questions the average 
congruence among variants increases when the demanded 
variants increase. If we process more than one generator round 
in one experiment it is possible to characterize the experiment 
results as the whole average congruence per one round and the 
whole average time per one round. The example of such an 
experiment is illustrated by the following table 3 where 100% 
of all questions were used, i.e. on average 96.375 questions per 
one field and on average 6.375 demanded questions per one field 
(see table 1). In table 3 the average congruence among variants 
in % for every round and both algorithms are stated in the first 
two rows. The computing time of generating the demanded 
variants in seconds for every round and both algorithms are 
presented in the last two rows. The last column shows the whole 
averages per one round.

N 1 2 3 4 5 6 7 8 9 10 Avg.

Congru-
ence [%]

H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NH 5.49 6.14 7.04 7.44 7.97 6.79 7.71 6.53 6.01 8.49 7.01

Time
[s]

H 0.21 0.19 0.23 0.26 0.25 0.24 0.30 0.37 0.66 1.19 0.39
NH 0.76 0.73 1.27 0.92 1.00 7.48 2.09 2.00 3.67 15.38 3.53

Table 3: Average congruence and the time of generation, 2017 
(source: own calculation)

The described experiment can be characterized by the following 
values of the input and output parameters:
ANSQ= 96.375
ANDQ= 6.375
AC = 7.01% for NH, 0% for H
AT = 3.53 [s] for NH, 0.39 [s] for H
In the implemented experiments the values AC (table 4) and 
AT (table 5) were measured for different values of ANSQ from 
100% to 20% of the basic file of questions and for the increasing 
values of ANDQ.
For every ANSQ and ANDQ the pair NH | H of values for the 
algorithm without heuristics and algorithm with heuristics is 
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presented. In every experiment 10 rounds for ANDQ=6.375 
and 5 resp. 3 rounds for ANDQ=11.25 resp. ANDQ=20 were 
processed with respect to the time complexity of computing. If 
the test was not able to assemble according to the demanded 
criteria (the number of points and the number of questions for 
every thematic field) in the given round, the random selection 
form of the source questions was implemented again until the test 
was assembled or the experiment finished after the configured 
time (it was set to 2 hours in all the experiments provided).

ANSQ
ANDQ = 6.375 ANDQ = 11.25 ANDQ = 20.00

NH H NH H NH H
96.375 (100%) 7.15 0.00 Inf 4.83 Inf 21.54
86.50 (90%) 7.97 0.00 23.53 11.16 Inf 25.60
76.75 (80%) 8.34 0.14 19.04 13.35 Inf 35.98
67.25 (70%) 10.57 0.80 21.91 16.31 Inf x
57.50 (60%) 11.88 1.96 24.88 20.18 Inf x
48.00 (50%) 15.20 4.30 31.14 29.36 Inf x
38.25 (40%) 18.20 6.54 38.74 39.33 x x
28.50 (30%) 25.45 17.41 x x x x
19.00 (20%) 37.38 38.17 x x x x

Marking used in the table 4 and 5: 
x  - the test was not assembled with respect to the demanded criteria 

according to a small number of the source questions,
Inf  - the computing finished according to overtime (2 hours).

Table 4: Average congruence (AC) without heuristics (NH) and 
with heuristics (H) [%], 2017 (source: own calculation)

ANSQ
ANDQ = 6.375 ANDQ = 11.25 ANDQ = 20.00

NH H NH H NH H
96.375 (100%) 1.03 0.16 Inf 0.30 Inf 187.13
86.50 (90%) 1.43 0.16 115.34 0.26 Inf 92.37
76.75 (80%) 1.01 0.15 111.95 0.23 Inf 5.37
67.25 (70%) 0.65 0.13 7.41 0.27 Inf x
57.50 (60%) 0.83 0.12 7.28 0.25 Inf x
48.00 (50%) 0.41 0.13 10.70 0.20 Inf x
38.25 (40%) 0.27 0.10 0.72 0.27 x x
28.50 (30%) 0.20 0.12 x x x x
19.00 (20%) 0.13 0.10 x x x x

Table 5: Average time (AT) without heuristics (NH) and with 
heuristics (H) [s], 2017 (source: own calculation)

Discussion
As it is apparent from the values in the tables 4 and 5 for the 
increasing number of the demanded questions (ANDQ > 
6.375) and the decreasing number of the source questions the 
assembling of the test was not successful in the configured max 
time of the process. The presented values depend on the structure 
of the source questions in the thematic field according to the 
enlistment of questions to the groups and the mutual excluding 
in one test as well as the number of the tied questions and the 
tied groups. That’s why it is suitable to compare the obtained 
values for NH algorithm and H algorithm that were computed in 
relation to the same data, i.e. to the same structure of the source 
questions.
Despite the previous statement it is obvious that with increasing 
ANDQ the congruence increases as well as the time complexity. 
Especially the time complexity can be characterized as 
O(K(ANSQ, ANDQ)), where K is the binomial coefficient, i.e. the 
time complexity depends above all on the number of the source 
questions (ANSQ) and the number of the demanded questions 
(ANDQ). The proposed heuristics decreases the number of the 
source questions in the process of the searching tree construction 
and this way the time complexity of the generation process 
decreases, but it does not increase the congruence. By contrast, in most 
comparisons the final congruence of the test generation the algorithm 
with heuristics is lower than the algorithm without heuristics.

The advantage of the proposed and in practice applicable 
generator is a simple system of parameter setting that controls 
generation in terms of difficulty and number of questions from 
each of the areas considered. Another advantage is the simple 
format of source texts for individual questions and thus a simple 
process of creating questions without the need to use a more 
complex SW. Optionally, it is possible to use already prepared 
questions that may be in plain text format. Among the undeniable 
advantages over similar systems is the choice of different output 
test formats. Tests can be generated in pdf format suitable for 
a written test printing, in html format for placing on the web for 
online testing or into the LaTeX structure for further processing.
As limitations of the proposed solution, the impossibility 
to value the individual questions in view of the difficulty of 
other tasks in the final test may be considered. Each question 
is rated by a specific point value within a given area. On one 
side, the comparative difficulty level of each variant of the test 
is determined by the described approach of assembling the tests 
according to the given number of questions and the total number 
of score points representing difficulty from the given thematic 
field. On the other side, this assumes a correct assessment of 
the difficulty of questions on a scale of 1-3 points by the authors 
of questions from each individual field. The overall difficulty 
of variants of the entire test can be compared only with regard 
to this evaluation of individual questions by the good fit tests. 
Equally, the different level of students’ knowledge is not 
considered by these tests (Klůfa, 2016). Compared to Klůfa and 
Kaspříková (2012), the results of previous tests are not taken 
into account by the proposed method, and the structure of the 
test is not modelled using estimated probability distributions.
Similarly, the possibility of more sensitive control of the difficulty 
of individual tasks is limited. All questions are of the MCQ type 
and are designed by the designers of the questions as static from 
the domain. Therefore, the system does not allow to variate the 
distractors (bad answers) dynamically with respect to adjusting 
the difficulty by choosing ontologically close distractors. The 
maximal number of questions in the area is limited also with 
regard to the system of grouping questions, which controls the 
placement of questions in the test within the required context. 
However, the proposed algorithm for classifying questions 
into groups is versatile, allowing the extension of the grouping 
interval used and thus increasing the maximal number of 
questions for the given area.
In the future, we consider extending the functionality of the test 
generator by the implementation the option into the generator 
to use not only statically specified but also parameterized 
questions.
Furthermore, we will focus on the issue of comparable difficulty 
level of individual variants both from the point of view of 
individual students’ results and from the point of view of 
measurement and comparison of the difficulty of individual 
variants among themselves. This would extend the use of the 
generator significantly, and partially eliminate some of the 
above limitations.

Conclusions
The system described in this paper is a useful aid, namely in 
the process of preparing tests stemming from various fields, for 
example from the sphere of the entrance examination procedure 
applied in the authors’ institution. When using a larger number of 
sources or demanded questions the original algorithm non-using 
the heuristics described above does not allow for assembling the 
demanded test variants in an acceptable time. On the contrary, 



84 PP

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

the proposed heuristics allows the use of the generator in the 
real time.
The paper describes the functionality and the process of 
implementation of the generator of questions stemming from 
the set fields by means of a combination of questions according 
to the set criteria, i.e. namely the number of questions in the test 
for the given thematic field and the overall scoring of questions 
in the given field.
The solution of the generation process is based on the construction 
of a searching tree and its depth-first searching combined with 
the backtracking algorithm. The main input parameters are the 
number of source questions and the number of the demanded 
questions. These parameters most influence not only one of the 
most important final outputs of the generation process, i.e. the 
mutual congruence among particular variants of the test, but 
also the time complexity of the generation process. The depth-
searching of the tree results in the combinatorial explosion and 
high increasing of time complexity. In some configurations of 
the input parameters, especially the source questions and the 
demanded questions, the generation process does not finish 
within the required maximal time limit of 2 hours. That is the 
reason why to propose the pre-process of preselection of a limited 
smaller number of questions without placing them back to the 
source questions. This preselection process also respects some 
input criteria, and it is able to satisfy them in the quadratic time 
complexity. If the generating process is unsuccessful because 
of the empty list of the source questions or a small number of 
questions in the list, the generator starts the process again with 
a new selection from all the newly permuted source questions. 
The proposed improving of algorithms decreases the complexity 
of computing namely with respect to the increasing number of 
the demanded questions, and contributes to the low congruence 
among different test variants. The mutual congruence of variants 
generated by the algorithm using the proposed heuristics is at 
least as good (and mostly even better) as the congruence of the 
test variants generated by means of an algorithm non-using this 
heuristics.
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