EFFICIENCY OF KNOWLEDGE TRANSFER THROUGH KNOWLEDGE TEXTS: STATISTICAL ANALYSIS

  • Tereza Rauchová Czech University of Life Sciences Prague
  • Milan Houška Czech University of Life Sciences Prague

Abstract

Texts are an important way to share and transfer knowledge. In this paper we analyse the impact of a specific form of texts, so called “knowledge texts”, on the efficiency of knowledge transfer. The objective is to verify or reject several hypotheses on the relationships among the style of educational texts (standard or knowledge styles), learning outcomes (performance of the students after learning) and subjective evaluation of conformity of working with individual styles of the texts. For this purpose, we carry out experiment with a homogeneous group of the students (n = 41) divided into an experimental group and a control group. We use statistical methods to process the results of the experiments; ability of the students to solve specific tasks and their opinions on readability and understandability of the texts subject to the time spent for learning. Even if we determine statistically significant relationships between the style of texts and accuracy of the problem solving in the experimental group only, the results allow us to improve the experiment and apply the methodology developed in a less structured branch than the Operational Research (Graph Theory) is. The methodology is another benefit of the paper, because it can be applied independently on a particular domain.

References


  • Dobrylovský, J. (2009) 'Dlouhodobé trendy ve vývoji obsahu učebnic zeměpisu pro gymnázia', E-Pedagogium, vol. 2009, no. 5, pp. 7-25.

  • Dömeová, L., Houška, M., Beránková, M. (2008) Systems Approach to Knowledge Modelling, Hradec Králové: GSOC.

  • Glava, A., Glava, C. (2011) 'The model and the didactic modelling an analytic point of view', Procedia - Social and Behavioral Sciences, vol. 15, pp. 2228-2231.

  • Hodis, V. (2003) Hodnocení učebnice Praktické činnosti pro 6. – 9. ročník základních škol: Práce s počítačem. In: Teoretyczne i praktyczne problemy edukacji technicznej i informatycznej 2003. Rzeszów: Wydawnictwo Oświatowe FOSZE, pp. 143-147. 

  • Kools, M., Van De Wiel, M.W.J., Ruiter, R.A.C., Crüts, A., Kok, G. (2006) 'The effect of graphic organizers on subjective and objective comprehension of a health education text', Health Education and Behavior, vol. 33, no. 6, pp. 760-772.

  • Kolman, L. (2008) 'K-Maps of HR Selection Procedures and Their Potential Use in the Identification of Talented Students', Journal on Efficiency and Responsibility in Education and Science, vol. 1, no. 1, pp. 20-26.

  • Lee, J.H., Segev, A. (2012) 'Knowledge maps for e-learning', Computers and Education, vol. 59, no. 2, pp. 353-364.

  • Lindseuy, J. K. (2009) Introduction to Applied Statistics: A Modelling Approach. 2nd Edn. New York: OXFORD University Press.

  • Maňák, J. and Janík, T. (2009) Výukové metody jako předmět výzkumu. In:  M. Janíková and K. Vlčková, eds.: Výzkum výuky: tematické oblasti, výzkumné přístupy a metody. Brno: Paido, pp. 83-96.

  • Mikk, J. (2007). Učebnice: budoucnost národa. In: Maňák, J. and Knecht, P. eds. Hodnocení učebnic, Brno: Paido, pp. 11-23.

  • Ozuru, Y., Dempsey, K., McNamara, D.S. (2009) ‘Prior knowledge, reading skill, and text cohesion in the comprehension of science texts’, Learning and Instruction, vol. 19, no. 3, pp. 228-242.

  • Peck, R., Devore, J.L. (2012) Statistics: The Exploration and Analysis of Data. 7th Edn. Boston: Brooks/Cole Cengage Learning.

  • Peng, R.D., Hengartner, N.W. (2002) ‘Quantitative analysis of literary styles’, The American Statistician, vol. 56, no. 3, pp. 175-185.

  • Prasad, G.V.R.J.S., Ojha, A. (2012) 'Text, table and graph - Which is faster and more accurate to understand?', Proceedings - 2012 IEEE 4th International Conference on Technology for Education, T4E 2012, pp. 126-131.

  • Starý, K., Chvál, M. (2009) Kvalita a efektivita výuky: metodologické přístupy. In:  M. Janíková and K. Vlčková, eds.: Výzkum výuky: tematické oblasti, výzkumné přístupy a metody. Brno: Paido, pp. 63-81.

  • Šubrt, T. et al. (2011) Ekonomicko-matematické metody, Plzeň: Aleš Čeněk.

  • Tarchi, Ch. (2010) ‘Reading comprehension of informative texts in secondary school: A focus on direct and indirect effects of reader's prior knowledge’, Learning and Individual Differences, vol. 20, no. 5, pp. 415-420.

  • Tannenbergová, P. (2009) 'Učebnice dějepisu pro 6. ročník základní školy z pohledu jejich didaktické vybavenosti', E-pedagogium, vol. 2009, no. 5, pp. 108-121.

  • Tudor, S.L. (2012) 'A study on the efficiency of using combined modern and traditional didactic strategies', Procedia - Social and Behavioral Sciences, vol. 33, pp. 989-993.

  • Vališová, A., Kasíková, H. (2011) Pedagogika pro učitele, Prague: Grada Publishing.

  • Wan, C.H., Lee, L.H., Rajkumar, R., Isa, D. (2012) ‘A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine’, Expert Systems with Applications, vol. 39, no. 15, pp. 11880-11888.

  • Zack, M.H. (1999) ‘Managing Codified Knowledge’, Sloan Management Review, vol. 40, no. 4, pp. 45-58.

Published
2013-03-31
How to Cite
Rauchová, T.; Houška, M. (2013) 'EFFICIENCY OF KNOWLEDGE TRANSFER THROUGH KNOWLEDGE TEXTS: STATISTICAL ANALYSIS', Journal on Efficiency and Responsibility in Education and Science, vol. 6, no. 1, pp. 46-60. https://doi.org/10.7160/eriesj.2013.060105.
Section
Research Paper

Keywords

Knowledge unit; Standard text; Knowledge text; Statistical analysis; Graph theory